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UNIT-1
LESSON-01

PRELIMINARIES

NORMAL SUBGROUPS-ISOMORPHISM
THEOREMS

1.1 Introduction.
Recall that the symmetric group on three symbols is denoted by S3 and is
described as follows

Ss = {e,a,a* b,ab,a’h/ a® =2 = b? ba = a’b}

Clearly H = {e, b} is a subgroup of S;.
Now consider the cosets aH, Ha where a € Ss
aH = {ae,ab} = {a, ab}
and Ha = {ea,ba} = {a,ba} = {a,a’b}.
Observe that aH # Ha whereas if N = {e,a,a’} then we also know that N
is a subgroup of S5
Now for b € S3, we have bN = {be, ba, ba’*} = {b, a*b, ab}.
and Nb = {b, ab, a*b}.
In this case observe that bN = Nb. It is not a just coincidence.

E.Galois is the first mathematician, who recognised that those subgroups
of a group for which the left and right cosets coincide are of some special one.
This observation led to the following notion of normal subgroups.

1.2 Normal Subgroup.

1.2.1 Definition:

Let G be a group. A subgroup N of G is called a normal subgroup of G if
xNx~! C N for every x € G. We denote this by writing N < G.
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Observe that G, {e} are always normal subgroups of a group G where
e € G is the identity. Further note that, if G is an abelian group, then every
subgroup of GG is normal in G.

In the following theorem, we give some equivalent conditions for a sub-
group of a group to be a normal subgroup.
1.2.2 Theorem
Let N be a subgroup of a group GG. Then the following are equivalent.
(i) NaG
(ii) xNz~! = N for every x € G.
(iii) N = Nz for every = € G.
(iv) (zN)(yN) = xyN for all z,y € G.
Proof.
Given that N is a subgroup of a group G.
To prove the theorem, we prove (i) = (i), (it) = (iii), (¢i1) = (iv) and
(iv) = (7).
(1) (i) = (i)
First suppose N is a normal subgroup of G i.e. N < G. Let x € G.
Then by definition of a normal subgroup, zNz~! C N. Also we have 27! € G.
Hence xNz~! C N. Therefore N = z(x 'Nz)z~! € xNz~! which proves
that N C Nz~ Hence zNx~! = N, proving (ii).
(2) (i) = (iii)

L' = N for every z € G.

Now suppose x Nz~
Nz = (zNaz ')z = xNe = xN.
proving (iii).

(3) (iid) = (iv)



Suppose N = Nz for every z € G.

Let y e N

Now (zN)(yN) = 2(Ny)N = 2(yN)N = zyNN = xyN.

Since NN = N as N is a subgroup of G.

Therefore tN.yN = zyN.

(4) (iv) = (2)

Finally assume that (iv) holds

That is e N.yN = zyN for all z,y € G.

Now Nz~ ' = xNz~le C 227 !N = eN = N since z7'e € 271 N.
Proving that tNz~' C N (actually we have zNz™! = N).
Hence N <1 G. Hence the theorem.

Some other results on normal subgroup, we relegate to exercises.
1.3 Quotient group.

If N is a normal subgroup of G, we have shown that every left coset of N
in G is a right coset of NV in G and vice versa , that is we cannot distinguish
between the left and right cosets of N.

We denote that set of all left (right) cosets of N in G by <. Also recall
that this set is closed under multiplication of cosets namely *N.yN = xyN,
where z,y € G.

1.3.1 Definition.

Let N be a normal subgroup of a group G then the set % of all left (right)

cosets of N is a group under coset multiplication that £ = {xN|z € G}.

xN.yN = xyN where z,y € G.

G

It is easy to see that (N, ) is a group under multiplication the group % is

called the quotient group of G by N.



1.3.2 Remark.

Recall if (G,.) and (G, *) are any two groups and f : G — G’ is a homomor-

phism, then the kernel of ¢ is denoted by ker¢ and is defined as
kerf={ze€G/f(x)=¢}.

where ¢’ is the identity of G'.

Clearly e € ker f and kerf is always a normal subgroup of G.

Further if the mapping ¢ : G — £ is defined by ¢(z) = 2N,z € G. Then
¢ is a surjective homomorphism and ker¢ = N. This mapping ¢ is called as
the canonical homomorphism.

1.3.3 Definition

Let GG be a group and S be a non empty subset of G. Then the normalizer of

S in G is denoted by N(S) and is defined as N(S) = {x € G/xSz~! = S}.
If S = {a} that is the normalizer of a singleton set {a} is denoted by

N(a).

Clearly N(S) is a subgroup of G.

Further if H is any subgroup of G, then N(H) is the largest subgroup of G

in which H is normal. Also if K is a subgroup on N(H), then H is a normal

subgroup of K H.

1.4 Derived group

Let G be a group. For any a,b € G, aba='b~" is called a commutator in
G.

The subgroup of G generated by the set of all commutators in G is called
as the commutator subgroup of G or the derived subgroup of G. We denote
this by G'.

1.4.1 Remark



It is easy to see that G’ is a normal subgroup of G and the quotient group
g is abelian. Further if H << G then % is abelian if and only if G C H.
1.5 Isomorphism Theorems

Let N be a normal subgroup of G. We know that the quotient group
% is the homomorphic image of G under the canonical homomorphism (Re-
mark 1.3.2). We now prove this, that is every homomorphic image of a group
(G is isomorphic to a quotient group of GG. More precisely, we state the first
isomorphism theorem.

Theorem 1.5.1 First Isomorphism Theorem

Let ¢ : G — G be a homomorphism of groups then % ~ Im¢. Hence in

particular, if ¢ is surjective, then kg"d> ~ G

Proof.

Given that ¢ : G — G’ be a homomorphism of groups let K = ker¢ = {x €
G/¢(x) = €'}. Also recall Im¢ = ¢(G) = {¢(x)/r € G}.

Now define the mapping v : % — Im¢ by Y(xK) = ¢(z) for any zK € %
First we show that 1 is well defined.

For any z,y € G let K = yK which implies y 'z € K. Thus we have
o(y~'a) = ¢ from which we get ¢(y~")é(x) = ¢ which imply (x) = 6(y).
Hence v is well defined.

We now prove that v is a homomorphism.

For 2,y € G, Y(aK.yK) = Y(zyK) = ¢(zy) = ¢(x)d(y).

= Y(xK)Y(yK) since K is a normal subgroup of G and ¢ is a homomor-
phism, proving that 1 is a homomorphism.

Also if Y(zK) = 1 (yK) we have ¢(x) = ¢(y).

which imply ¢(y)~*é(z) = ¢ which gives ¢(y'z) =¢'.



= y~lr € K = 2K = yK, proving that 1 is one-one.
Also if ¢(x) € Img for x € G, we have Y(xK) = ¢(x), showing that 1 is

onto.

Therefore % is isomorphic to Imd¢ that is % ~ Imao.

Further if ¢ is onto then Im¢ = G, we have % ~ G, completing the
proof.

As the second and third isomorphism theorems are simple consequences
of first isomorphism theorem, we leave the proofs of these theorems to the
reader as exercise. so we just state these results in the following theorems.
1.5.2 Theorem (Second isomorphism theorem)

Let H and N be subgroups of a group G and N <1 G. Then % ~ %
Proof. Exercise.

1.5.3 Theorem (Third isomorphism theorem)
Let H and K be normal subgroups of a group G and K C H. Then

~

TR oY
TQ

Proof. Exercise.

The following theorem provides a relationship between the subgroups (normal
subgroups) of a group G and the subgroups (normal subgroups) of another
group G’ where ¢ : G — G is a homomorphism. As the proof of this the-
orem is simple, the details are left to the reader. This result is known as
correspondence theorem.

1.5.4 Theorem (Correspondence theorem)

Let ¢ : G — G’ be a homomorphism of group G onto a group G . Then the

following are true.

!

i) H<G= ¢(H) <G.
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(i) H <G = ¢ (H) <G.

(iii) H <G = ¢(G) < G-

(iv) H <G = ¢ '(H)<G.

(v) The mapping H — ¢(H) is a 1 — 1 correspondence between the family
of subgroups of G containing ker¢ and the family of subgroups of G'; further

more, normal subgroups of G correspond to normal subgroups of G'.

Proof. Exercise.

1.5.5 Remark

G

Let N be a normal subgroup of G. Given any subgroup H' of ~

, there is a

unique subgroup H of G such that H = % Further H < G if and only if

H G
~ <N

1.6 Definition (Maximal normal Subgroup)

Let G be a group. A normal subgroup N of G is called a maximal normal
subgroup of G if
(i) N#G.
(i) H<Gand H DN = H =N or H=G.
1.6.1 Definition

A group G is said to be simple if G has no proper normal subgroups;
that is G has no normal subgroups except {e} and G.
1.6.2 Remark:

Let N be a proper normal subgroup of G. Then N is maximal normal
subgroup of G if and only if % is simple.
1.6.3 Remark

Let H and K be distinct normal subgroups of a group G then H N K is
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maximal normal subgroup of H and also of K.
1.7 Summary

In this lesson we have introduced the notion of normal subgroup and
then defined quotient group. Also we have defined the derived group.

Also we have observed that normal subgroups are kernels of homomor-
phisms and vice versa. Further we have proved first isomorphism theorem
and stated correspondence theorem. At the end of the section, we have
defined the notion of maximal subgroups and then stated a result which es-
tablishes the relation between simple groups and maximal normal subgroups.
1.7 Model Examination Questions
(1) Prove that the center Z(G) = {x € G/xa = ax Ya € G} is a normal
subgroup of the group G.

(2) Let G be a group and H is a subgroup of index 2, then show that H is
a normal subgroup of G.

(3) If N and M are normal subgroups of a group G such that N N M = {e}
then show that nm = mn for all n € N,m € M.

(4) Give an example of a non abelian group each of whose subgroups is
normal.

(5) If N is a normal subgroup of a group G and H is a subgroup of G then
show that N H is a subgroup of G. Further if H <1 G, then show that NH is
also normal in G.

(6) Let H be a subgroup of G such that 2 € H for every x € G. Then show
that H is a normal subgroup of G.

(7) Write down all normal subgroups of Sy.

(8) If G is a group with center Z(G) and if % is cyclic then show that G

Z(Q)

12



is abelian.

9) Show that there does not exist any group G such that

G | _
m’ — 37,
10) Show that a non abelian group of ordet 6 is isomorphic to Ss.

11) Write down all the homomorphic images of

(
(
(
(i) the Klein four group.
(ii) the octic group.

(

12) Show that each dihedral group is isomorphic to the group of order 2.

1.9 Glossary

Normal subgroup, Quotient group, Derived group, Simple group.

13



LESSON-02

AUTOMORPHISMS

2.1 Introduction.

The central idea which is common to all aspects of modern algebra is the
notion of homomorphism. By this we mean a mapping from one algebraic
system to another algebraic system which preserves structure
In the following section, we give some basic definitions which are useful in
later sections of our lesson
2.2 Basic Definitions.

Let G and H be any two groups.

(i) A mapping ¢ : G — H is called a homomorphism

if p(xy) = ¢(z)p(y) for all z,y € G.

(i) If ¢ : G — H is a one - one homomorphism, then ¢ is called

a monomorphism of GG into H.

In this case we say that ¢ is an embedding of G into H

(iii) If ¢ : G — H is an onto homomorphism,

then ¢ is said to be an epimorphism.

In this case we say that GG is homomorphic to H

or H is said to be the homomorphic image of GG

(iv) If ¢ : G — H is a bijective homomorphism,

then ¢ is said to be an isomorphism of G onto H, and we say that G is
isomorphic to H and in this case we denote it by writing G ~ H.

(v) A homomorphism of G into itself is called an endomorphism of G

2.3 Definition: Automorphism

An isomorphism of a group G onto into itself is called an automorphism, that

is an automorphism of group G is an automorphism of GG is an isomorphism
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of G onto G itself.

The set of all automorphisms of G is denoted by Aut(G) that is

Aut(G) ={¢: ¢ : G — G is an isomorphism}

2.3.1 Remark:

For any group G, the identity map i : G — G defined by i(z) =2 Ve G
is an automorphism

Thus for any group G, Aut(G) is non empty

2.3.2 Lemma:

Let G be a group. For every g € G, the mapping I, : G — G defined by
I,(x) = gxg~! for all x € G is an automorphism of G.

Proof: Given that GG is a group.

For any g € G, I,(x)=gxg™' for any z € G

First we prove that I, is a homomorphism.

Let x,y € G

Iy(zy) = g(zy)g™ = gzg~ gyg™" = Iy(x)I4(y).

I, is one-one : For any z,y € G,

If I,(z) = I,(y), then gzg~' = gyg™!

We have z =y

Further I, is onto: For each x € G . There exists an element gzg~' € G such
that I,(g~'zg) = g(g~'vg)g™" ==

Therefore I, is an automorphism of G.

2.3.3 Definition: Inner automorphism:

Let G be a group. For a given g € G, the mapping I, : G — G defined by
I,(x) = gxg~! for all x € G is an automorphism of G.is called an inner au-

tomorphism of G determined by g € G.
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The set of all inner automorphism of G is denoted by Inn(G) or in G.

2.3.4 Remark:

For any group G, Inn(G) is nonempty since every element of G determines

an inner automorphism of G and Inn(G) is subset of Aut(G).

2.3.5 Theorem:

The set Aut(G) of all automorphisms of a group G is a group under the

composition of mappings and Inn(G) < Aut(G)

Moreover % < Inn(G)

Proof: Let G be any group. Then we know that the symmetric group S¢ is

the group of all permutations of G under the composition of mappings.

Since the identity map on G is an automorphism of G , we have Aut(G) is

non empty.

Clearly, Aut(G) C Sg

i) First we prove that Aut(G) is a group

Let 0,7 € Aut(G) then o7 and o~ ! are bijective.

For all z,y € G, we have

(o7)(zy) = o(7(zy)) = o(7(x)7(y))
o(7(x))o(7(y)

(o7)(2)(o7)(y)

Showing that o7 € Aut(G)

Further, o(c=(z)o"(y)) = o(oc (x))o (a7 (y))

Which gives o7 (zy) = o7 (z)o"(y)
Thus o' € Aug(G) V o € Aut(G)

16



Therefore Aut(G) is a subgroup of the symmetric group S¢
Hence Aut(G) is a group.
(il) We now prove % = Inn(Q)
Define a mapping ¢ : G — Aut(G) by ¢(a) = I, for any a € G
For any a,b € G and for all x € G,
Ip(z) = (ab)z(ab)™?
= a(bzb~)a!
= I,(bxb™ )
= I, 1,(x)
which implies I, = 1,1,
Thatis ¢(ab) = Ly = I,J, = 8(a)d(b)
showing that ¢ is a homomorphism.
Also for every I, € Aut(G), there exists a € G such that ¢(a) = 1.
Now, ker ¢ = {a € G/¢(a) = identity automorphism of G }
={a € G/I, = identity automorphism of G }
={a e G/Il,(x) =2 Vz e G}
={a € Glaxza™ =z Vzr € G}
={a € G/ax = xa Yz e G}
= Z(@G), the center of G.

Therefore, by the fundamental theorem of homomorphism, kef ;=1 nn(Q)
That is % = Inn(Q).

(iii) Finally, we prove Inn(G) < Aut(G)

Let 0 € Aut(G) and [, € Inn(G) where a € G .

Now, (0l.07")(z) = 0la(07"(2))

= 0(la(07!(x))
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=o(ac ™ (z)a™t)

(x))o(a™")

= o(a)zo(a™t)

=o(a)o(o™

= Iyq)(z) forany ze G
Therefore, we have ol,0™ ' = I, where o(a) € G.
As o(a) € G, we have I, € Inn(G)
Hence we have ol,0c~! € Inn(G) V o € Aut(G), I, € Inn(G)
Which shows that Inn(G) < Aut(G)

2.3.6 Remark:
If Z(G) = {e}, then from of the above theorem G = Inn(G).

2.3.7 Definition: Complete group

A group G is said to be complete if (i) Z(G) = {e}, and

(ii) every automorphism of G is an inner automorphism of G

That is G is complete if G ~ Inn(G) = Aut(G).

2.3.8 Example.

Let o be an automorphism of a group G. Then for any z € G, x and o(z)
are of same order

Proof:- Given that ¢ : G — G is an automorphism where G is any group
and let x € G

Let o(x) =m and o(x)=n

we now show that m=n

Now, (o(x))™ =o(x).0(x). - -o(z) (m times )

= o(a™)

18



=o(e)
But o(o(z)) = n. Therefore n/m — (1)
Again o(2") = o(z.z.2...7)

=o(z).o(x).o(x) - -o(z) (n times )

This implies 2" = e, since ¢ is one-one
But o(x) =m Therefore m/n — (2)
Form (1) and (2) it follows that m=n
In the following example, we prove Ss is a complete group
2.3.9 Example:
The symmetric group Ss is complete
Proof.We know that the symmetric group S3 is as described as follows
S3={<a,b> /a®>=e="b*ba=a’b}
= {e,a,a?, ab,a’b}
observe that o(a) = o(a?) =3, o(b) = o(ab) = o(a?b) =2
We now determine Z(Ss).
Clearly ba = a®’b # ab = a,b ¢ Z(S;)
and (ab)(a?b) = a(ba)ab = a.a’bab = bab = a*b.b = a?
(a®b)(ab) = a®(ba)b = a*(a?b)b = a*b* = ae = a
Thus (ab)(a?b) # (a®b)(ab), from which we have ab, a®b ¢ Z(Ss3)
Further, if a®> € Z(S3) then a = a?.a* € Z(S3), a contradiction.
Therefore Z(S3) = {e}
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Hence by theorem 2.3.3, we have 25533) ~ Inn(Ss)

That is S3 ~ Inn(Ss)

We now define Aut(Ss)

For any o € S3, we have o(a) = a or a* and

o(b) = b, ab or a®b (in view of example 2.3.6)

as a,b are generators of S3, o(x) is known for any = € S3
Therefore |Aut(S3)| < 6

since Inn(Ss3) is a subgroup of order 6

we must have |Aut(S3)] =6 and Inn(S3) = Aut(Ss)
Therefore S3 ~ Inn(Ss) = Aut(Ss)

Hence S3 is a complete group.

2.3.10 Example:
Let G be a finite abelian group of order n and m be a fixed positive integer
relatively prime to n.
Then the mapping o : G — G defined by o(z) = 2™ is an automorphism.
Solution:- Given that G is a finite abelian group of order n , and m be a
natural number such that (m,n)=1

Also 0 : G — G is given by o(z) = 2™

m,,m

For any z,y € G, o(zy) = (zy)™ = 2™y™ since G is abelian

=o(z).0(y)
proving that ¢ is a homomorphism.
since m and n are relatively prime, there exists integers u and v such that
mu+nv=1

For all x € G, we have z™ = e since |G| =n
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$1 — xmqumJ — wmu‘xnv — l,mu<l,n)v — xmu

Therefore, for every x € G there exists an element z* € G such that
o(z") =az™ =z
showing that o is surjective.
kero = {x € G/o(z) = e}

={reG/x™=e}

={reG/z™ = ¢}

={reG/rx=e}= {e}
showing that o is one-one
Therefore ¢ is an automorphism of G
2.3.11 Example:
If G is an abelian group, then its inner automorphism group is trivial
Proof:- Given that GG is an abelian group and
I, be the inner automorphism determined by g € G
That isforall g € G, [,(x)=gzg 'V z€G
Iy(z) = grg™

=99 'x
=z =1i(zx) forall x € G and for any g€ G
I, =1

Therefore Inn(g) = {i/i : G — G is the identity map }
2.3.12 Example:
If G is a group of order 2 then Aut(G) is trivial
Proof:- Let G be a group of order 2 and G = {e, a}
Then Inn(G) is trivial. Since every group of order 2 is abelian.

If 0 € Aut(G) then o(e) = e and o(a) =a
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This implies that Aut(G) is trivial.

2.3.13 Example:

An abelian group with the condition that

a® # e for some a € (G, has a non trivial automorphism.

Proof:- Let G be an abelian group with the condition that a? = e for some
a€eG

That is a # a1

Now, define 0 : G — G by o(x) =z71

Clearly, ¢ is an automorphism, since G is abelian

Also, o(a) =a ' #a

showing that ¢ is non identity automorphism.

Thus Aut(G) is non trivial.

2.3.14 Example:

A non abelian group G always has a non trivial automorphism. Moreover if
G is finite |Inn(G)| =[G : Z(G)]

Proof:- Let GG is a non abelian group, then there exists elements a,b € G
such that ab # ba that is aba™! # b

For a € G we have I, € Inn(G) such that I,(b) = aba™' # b

Therefore, I, is a non identity automorphism.

Thus G has a non trivial automorphism.

Further if G is finite non abelian group then its center Z(G) is a subgroup
of Gand Z(G)#G

Therefore | Z(G) < |G|

By Theorem 1.1.7, we have % ~ Inn(G)

Z(G)
This implies  |Inn(G)| = |%| > 1.
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showing that there exists a non trivial (inner) automorphism and

[Inn(G)| = |G = Z(G)]

2.3.15 Example:

A finite group G having more than two elements and with the condition that
2?2 # e for some x € G must have a non trivial automorphism

Solution: Given that G is a finite group. We consider two cases

Case(i): First assume that G is an abelian

Now define o0:G —Gby o(x)=z2'V zed

Then o is an automorphism of G

Infact

o is a homomorphism

1 1

since o(zy) = (zy) ' =27y~ = o(x)o(y) as G is abelian .
Also note that o is one-one .
For if o(z) =o(y), for z,y € G

gl =y

=y
o is onto. Since for any z € G, we have 2! € G is such that
olz7)=(z) ' ==z
Therefore o is non identity automorphism.
Case(ii): Now assume that G is non abelian
Define 7: G — G by 7(g9) = vgz™!

If 7(9)=7(h)

L—agha™'= g=h

then zgx~
showing that 7 is one-one.

For any g € G consider x71gz € G
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T(x7lgx) = x(z7lgx)a =g
proving that 7 is onto
Also for any g¢,h € G,
7(gh) = z(gh)z™' = xgxtzha™ = 7(g)7(h)
Proving that 7 € Aut(G).
Therefore 7 is a non trivial inner automorphism
Hence |Aut(G)| > 1, in this case also .
2.3.16 Example:
If G is an infinite cyclic group then |Aut(G)| = 2
Proof:- Given that GG is an infinite cyclic group.
We know that every infinite cyclic group is isomorphic to (Z, +)
Further we have Z= <1> = <-1>
Let 0:7Z — 7Z be an automorphism
Since 1 is a generator of Z, we have o¢(1) is also a generator of Z
Thus o(1) has two choices namely 1 and -1.
If o1(1)=1
Forn#1, oi(n)=0(1+1+1+-4+1) (n times)

=o1(1) +o1(1) + -+ o1(1)

=nl =n
Also we know that o1(—n) = —o1(n) = —n  since oy is a homomorphism
This shows that o1 =i, the identity automorphism of Z.
If 09(1) = —1 then o9(n)=-n V neZ
Thus o2 =1
Therefore |Aut(Z)| = 2
2.3.17 Example:
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Let G = [a] be a finite cyclic group of order n. Then the mapping ¢ defined
by a F a™ is an automorphism of G if and only if (m,n)=1

Proof:- Given that G = [a| and |G| = n. Hence o(a) =n

we have o :G — G defined by o(x) = 2™

If (m,n)=1 then by example 2.3.10, we have ¢ is an automorphism
Conversely, Suppose that o is an automorphism of G.

Then the order of o(a) = a™ is same as that order of a.

That is o(a™) = o(a) = n.

If (m,n)=d then ((a)™)(@ = ((a)")(@) =e

since o(a) = n and also using the fact o(a™) =n

We have n divides %. This possible if d=1

Therefore, (m,n)=1

2.3.18 Example:

If G is a finite cyclic group of order n, then show that |Aut(G)] = ¢(n)
where ¢ is Euler’s totient function.

Proof:- Let G =[a], |G| =nand o € Aut(G).

If € G then z=ad" for some k&N.

Now, o(x)=oc(a*)= (o(a))*

Therefore o is completely known if o(a) is known

Let o(a) =a™, m<n

By example 2.3.17, we know that

o € Aut(QG) if and only if (m,n)=1.

That is each positive integer less than n and relatively prime to n determines
a unique o € Aut(G) and conversely each o € Aut(G) determines a

unique positive integer m less than n and relatively prime to n.
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Therefore |Aut(G)| = {me€Zt/1<m <n, (m,n)=1} = ¢(n)
2.3.19 Example:

Show that only cyclic group G of order n > 2 has an automorphism which is
not an inner automorphism

Proof: Given that G is cyclic.

Therefore G is abelian.

Hence Inn(QG) is trivial.

We have |Aut(G)| = ¢(n) > 1 since n > 2.

Thus G has an automorphism which is not an inner automorphism.

2.4 Summary.

In section 2.3, we have defined inner automorphism of a group and
complete group. Also we have determined the automorphism groups of a
finite cyclic group and infinite cyclic group.

2.5 Model Examination Questions.

(1) If K is the klein four group, then find Aut(G) also

determine Aut(Zgy X Zs).

(2) Let G be a group and o : G — G is an automorphism of G. If for
a € G, N(a) ={x € G/xa = ax}. Then prove that N(o(a)) = o(N(a))

(3) Let G be the group of order 9 generated by elements a and b, where
a® = b® = e. Then find Aut(G).

(4) Show that Aut(Zq X Z3) ~ Aut(Zs) x Aut(Zs).

2.6 Glossary.

Automorphism, Inner automorphism, Complete group
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LESSON-03

G-SETS AND CLASS EQUATION

3.1 Introduction.

Group actions are powerful tool for proving theorems for abstract group
and for determining the structure of specific groups. The concept of an ac-
tion is a method for studying how an algebraic structure interact with other
structures. In this lesson we study the action of a group G on an arbitrary
set first then on the group itself. We deduce orbit decomposition of any ar-
bitrary set X under the action of a group G. Moreover we establish Cayley’s
theorem. Further using the conjugacy relation among the elements of a group
G, we derive class equation. This class equations has numerous applications
in studying finite groups. Also at the end of this lesson, we prove Burnside
theorem.

3.2 Action of a group on a set.

3.2.1 Definition:

Let G be a group and X is any set. Then we say that G acts on X if there

is a mapping ¢ : G X X — X, with ¢(a,z) written as a * x such that for all

a,beG, re X

(i) ax(bxz) = (ab) xx

(i) exz==x

The mapping ¢ is called the action of G on X and X is said to be a G-set.
In the above definition, we have defined the action of G on X on the

left side. In a similar manner, we can define action on the right side also.

From now onwards we restrict ourselves to groups acting on the left side only

3.2.2 Examples:

(a) Let G be any group. Take X = G. Define axz =azxa™, a€ G re X
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For all a,b,z € G we have
(i) a*x (bxx)=ax (bxb™') = abzb~ta™! = (ab)z(ab) ™' = ab* x
(i) exx =erel=u
Therefore G is a G-set.
This action of the group G on itself is called conjugation.
(b) Let G be a group and X= G. Define axx =az, a € G, x € G
For all a,b,z € G we have
(i) a* (b*xx) = a(br) = (ab)x = (ab) x x
(i) exz=er =2
Showing that G is a G-set.
This action of the group G on it self is called translation.
(c) Let G be a group and H is subgroup of G. Let X = % of left cosets can
be made into a G — set by defining a x *H = axH, a € G, xH € %
Infact, for any a,b € G, xH € %, we have
(i) ax(bxxH)=ax (bxH)=a(br)H = (ab)xH = abx zH
(ii) exzH = ex
Thus % is G-set.
(d) Let G be a group and H < G.
Consider %, the set of left cosets of H in G.
Define a x 2H = aza™'H, a € G, zH € &.
For all a,b € G, xH € % we have
(i) ax (bxxH)=ax (bab " H) = abxb~'a ' H
= abx(ab)'H
=abxaxH
(i) exzH = exe 'H = xH
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Hence % is a G-set.
3.2.3 Remark:

(i) We can also define action of G on X on the right hand side also by defining
¢: X x G — X with ¢(z,a) written as x * a satisfying
(i) (z*xa)*b=x=* (ab)
(ii) zxe=xz Va,beqG, xeX.
(i) If X is a G-set, we write ax instead a * x for the sake of simplicity.
3.2.4 Theorem:
Let G be a group and X is a non empty set. Then
(i) If X is a G-set, then the action of G on X induces a homomorphism
¢:G— Sy.
(ii) Any homomorphism ¢ : G — Sx induces an action of G onto X.
Proof: (i) Given that X is a G-set.
Therefore there is a map from G x X into X and
the image of (a,z) € G x X is denoted by a * x
Now, define ¢ : G — Sx. by ¢(a)(x) =a*xzra€ G, z€ X
Note that ¢(a) € Sx, the permutation group on X.
Clearly ¢(a) is bijective map on X.
Let a,b € G. For all x € X, we have
(p(ab))(x) = (ab) * x = a * (b* x)

= ¢(a)(o(b)(2))

= ¢(a)p(b)(z)
= ¢(ab) = ¢(a)p(b) YV a,bed

Hence ¢ : G — Sx is a homomorphism that arises due to the action of G on
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X
(ii) Suppose ¢ : G — Sy is a homomorphism.
Define a x x = (¢(a))(x) where a € G, = € X.

This defines a mapping whose domain is G x X and codomain is X
Now, a * (b x) (a)(o(b)(z))
( (a)¢(b ))( )
= ¢(ab)(x)
=abxx

since ¢ is homomorphism .
exx = (p(e))(xr) = x as ¢(e) is the identity on X.
Therefore X is a G-set.
3.2.5 CAYLEY’S THEOREM:
Let G be a group. Then G is isomorphic into the symmetric group Sg
Proof: Let G be a group. we now regard G itself as a G-set and apply the
first part of the Theorem 3.2.4
Defineaxz =ax, a€ G, x € G
Clearly e x x = x V x € G and since by associativity in G
we have ax (bxx) =abxz YV a,bz €.
Thus G is a G-set and the action of G itself isaxxr =axrVae G, x €@
Thus by part (i) of the Theorem 3.2.4, this action induces a homomorphism.
¢:G— Sg where ¢(a)(x) =axx=azxforallaeG, xe€qdq.
Now ker ¢ = {a € G/¢(a) = the identity of S¢}

={a € G/(¢(a))(x) = i(z)V = € G}

={aeGlax=xV z e G}

={aeG/a=¢} = {e}
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Showing that is ¢ injective
Therefore G is isomorphic into Sg
Hence the theorem.
3.2.6 Remark :
An isomorphism of a group G into a group permutations is called a faithful
representation of G by a group of permutations.
The action of G on % gives another representation of G by a group
of permutations, which is not necessary faithful.
3.2.7 Theorem :
Let G be a group and H is a subgroup of index n. Then there is a homomor-

phism ¢ : G — S, such that ker ¢ = ﬂ rHx "

zeG
Proof: Given that G is a group and H is a subgroup of index n.

Let & be the set of all left cosets of H in G and |£| = n.
Now, define ax xH = axH, a € G, xH € %

Clearly, this defines a mapping from G x % into %

For all a,b € G,xH € %, we have

(i) ax (bxxH) = a(bx)H = (ab)xH = (ab) * tH

(ii) exxH = exH = xH.

Therefore % is a G-set.

G
H

¢1: G — Sg defined by (¢1(a))(zH) = azH

Now, ker ¢; = {a € G/¢1(a) = identity of S%}
={a € G/((¢1(a))(zH) =zH Y z € G}
={a € G/axH = zHY z € G}
={a € G/x taxH = HY z € G}

Thus the above action of G on % induces a homomorphism
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={a € G/x tar € HV z € G}
={a€GJ/a€xHr 'V 1z e€G}
= m vHz ™t

zeG
But we have S¢ ~ S, sice |%| =n,
H

Now let ¢s : S% — S, be the isomorphism
Then let ¢ = po¢1
Further note that ¢ : G — S,, is a homomorphism since the composition of
homomorphisms is a homomorphism and
ker ¢ = {a € G/¢(a) = identity of S, }
= {a € G/pa(¢p1(a)) = identity of S, }
= {a € G/¢1(a) = identity of S%}
= ker ¢y
Since ¢ is an isomorphism

Therefore ker ¢ = ﬂ cHa "

zelG
3.2.8 Remark:

If H={e}, we get the Cayley’s representation in which case it is faithful.
3.2.9 Corollary:

Let G be a group with a normal subgroup H of index n, then

% is isomorphic into S,,.

Proof: From the Theorem 3.2.7, when H is a subgroup of G, there is a ho-
momorphism ¢ : G — S,, with ker ¢ with ker ¢ = ﬂ cHa "t

zeG

Given that H < G and ker ¢ = H Since xHx~' = H for all x € G.

Therefore by first isomorphism theorem 2= ~ I'm(¢)

Thus £ is isomorphic into S, (where Im(¢) < S,)

Hence the Corollary.
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3.2.10 Corollary: Let G be a simple group with a subgroup H(# G) of a
finite index n then G is isomorphic into .S,,.

Proof: Let H be a subgroup of G, H # G and [G : H| =n

By Theorem 3.2.7, there is a homomorphism ¢ : G — S, such that

ker ¢ = ﬂ rHx '

zeG
Since |H| < |G|, we must have |ker ¢| < |G|
We have ker ¢ < G. Since G is simple, ker ¢ = {e}.
By the first isomorphism theorem 5= ~ I'm(¢)
That is G is isomorphic into S,
Hence the result.
3.3 Orbit and Stabilizers:
3.3.1 Definition: Orbit
Let G be a group acting on a set X and let x € X. Then
the set G = {axz/a € G} = {ax/a € G} is called the Orbit of x in G.
3.3.2 Definition: Stabilizer
Let G be a group acting on a set X and let x € X.
Then the set G, = {g € G/gz = x} is called the stabilizer of x in G
Some times it is called as the isotropy group of x in G
3.3.3 Lemma: G, is a subgroup of G.
Proof: We have G is a group acting on a set X
That is for all g € G, y € X, we have gxy € X and
ax(bxy)=(ab)xy, exy=vy, V a,b€ G and ye X.
Let x € X and the stabilizer of x in G is denoted by G, and
G, ={a€eGlaxz =z}
Clearly G, # ¢ and G, C G
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For any g1, g9 € G, we have
(9192) ¥z =g (g2x 1) =gr*x ==
v=exx= (g g)xx =gy * (g1 %)= (91 *)
= qgpcG.and g ' €G, Va1, € G,
showing that G, is a subgroup of G
3.3.4 Remark:
i) G, Cc X
(ii) For any y € G4, G, = G,
Let y=bxx, bé&e (G. Then
Gy={axy/ac G} ={ax(bxx)/ac G}

={(ab) x z/a € G}

={cxx/ce G}

— G,
(iii) If G acts on itself by translation then for z € G
G,={aeG/axx =2} ={acGlax =z} = {e}
G, ={axzx/aec G} ={ax/ae G} =G
iv) If G acts on itself by conjugation then for x € G,
G,={a€Glaxz=1}={a€Glava™" =z}

= {a € G/ax = za}
= N(x)
In this case the stabilizer of an element x in G is the normalizer of x in G.
(v) Let H be a normal subgroup of G and consider the set <
The stabilizer of a left coset xH is the subgroup
G.y={9€ G/gzH = xH}
={geG/x'grH = H}
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={g€G/agv € H}
={geG/gexHr '}
=xHax™!
3.3.5 Conjugate Class of an element:
Let G be a group and x € G, Then
C(x) = {axa™"/a € G} is called the Conjugate class of x.
3.3.6 Remark:
(i) z € C(x) and hence ¢(x) is non empty.
(ii) If G acts on itself by Conjugation then for x € G
G, ={axx/a € G}
= {axa™'/a € G}
=C(x)
That is the Orbit of x in G is the conjugate class of x.
Also, G, ={a € G/axx ==z}
={a € Glaxa™ =z}
= {a € G/ax = za}
= N(a)
3.3.7 Theorem:
Let G be a group acting on a set X. Then the set of all Orbits in X under G
is a partition of X.
For any x € X there is a bijection Gz — G% and hence
Gal = (G G
Therefore if X is a finite set | X| = Z[G : G|

zeC
where C is a subset of X containing exactly one elements from each Orbit.

Proof: Given that the group G acts on X.
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For all a,b € G, x € X, we have a x x € X satisfying
(i) a* (b*x) = (ab) * x and

(ii) ex z = .

For every x € X, we have

G, ={a € G/a*x = x} is stabilizer of x

And Gz = {a*z/a € G} is the orbit of x.

Also note that the stabilizer G, is a subgroup of G and Gz, the orbit of x is
a subset of X.

Now define a relation ~ on X as follows

For x,y € X, x ~ y means z = a xy for some a € G.
(i) Forall z € X, we have z = exzx = zxz~azVzelX
Thus ~ is reflexive.

(ii) Suppose z ~ y then z = a *x y for some a € G

As y=exy=(a"ta)*y

=alx(axy)

Showing that y ~ x

Thus ~ is symmetric

(iii) If x ~y, y~ z then

r=axy, y=>bxz for somea,be G
Now (ab)x z=ax (bxz2)=axy==x

= T~z

Thus ~ is transitive.

Hence ~ is an equivalence relation on X.

Therefore ~ partitions X into mutually disjoint equivalence classes whose
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union is X.
Let z be the equivalence class of z € X
Now, z={y € z/y ~ z}
={yeX/y=axz ,a€G}
={axz/a € G}
=Gz
= the orbit of x in G
This shows that the set of all orbits forms a partition of X and hence
X=JGz— (1)
Note ﬁlcat the above union is disjoint.
Where C is any subset of X containing exactly one element from each orbit.
For a given x € X, define a mapping ¢ : Gx — G% by
¢la*xzx)=aG, foralaecG
Now, for any a,b € G
Let axx=bxx
Now (a™'b)xx=a"'*(bxx)
=atx(ax*x)
= (a7 'a) xx
=ex*xx
=x
and (a7'0)xz=2= axx=ax((a"'b)*z)
= (aa™'0) x x
= (eb) x x
=bxx

Therefore axz =b*xx < (a ') *xx=1x
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s albe G,

& aG, = bG,

< dlaxx) = d(bxx)
This shows that ¢ is well defined and injective.
For every left Coset aG,, there exists an element
a*xx € G, such that ¢(a*x) = aG,
Showing that ¢ is surjective.
Hence ¢ is a bijection.
Therefore, |Gz| = G% =[G: G — (2)
Suppose X is a finite set. Then from (1) and (2)
We have | X| = Z |G|

zeC

=) [G: Gy

zeC
Since X is the disjoint union of orbits Gz

3.3.8 Definition:

The Orbit decomposition of a set X under a group G.

The partition P = {Gz/x € C} of X under action of G on X is called the
orbit decomposition of X under G, where C is a subset of X containing ex-
actly one element from each orbit

3.3.9 Remark :

Let G be a group and a € G. Recall that

(i) C(a) = {zaz™"'/x € G} is called the conjugate class of a in G.

(i) N(a) = {a € G/zax™" = a} is called the normalizer of a in G

3.3.10 Theorem:

Let G be a group . Then the following are true.

(i) The set of Conjugate class of G is a partition of G.
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(i) |C(a)] = [G : N(a)]
(iii) If G is a finite set then |G| = > [G : N(a)], where the summation runs
over exactly one element from each conjugate class.
Proof: Given that G is a group.
(i) Define a relation ~ on G as follows
For, a,be G
a~b < a=axzbr™! for some z € G.
Now it is easy to see that the relation ~ is an equivalence relation on G.
Therefore ~ partitions G into mutually disjoint equivalence classes.
Let a be the equivalence class of a € G.
Then a ={y € G/y ~ a}
= {zaz™'/zx € G}
= C(a), the conjugate class of a

Now a € C(a) since a = eae™!
Thus a € C(a) C G

= {a} CC(a)CG

= G=|]JCl)— 1)
a disjoint ugiegn of conjugate classes, and C contains exactly one element
from each conjugate class.
(ii) Let a € G. Define a map ¢ : C(a) — % by ¢(zax™') = zN(a).
For every N (a) € % there exists x € G, zaz™! € N(a)
such that ¢(zaz™') = zN(a).
Showing that ¢ is surjective.

For any =,y € G
If ¢(vaz™) = p(yay™)
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zN(a) = yN(a)
y~'r € N(a)
y_lzm = ay‘lx

rar~t = yay~!

¢l

¢ is injective.

Therefore ¢ is bijective and hence

Cla) = 55! =[G : N(a)] — (2)

(iii) In case if G is finite, then from (1) and(2) we have

Gl =) _|C(a)| =) [G: N(a)]
acC aeC
where the summation is extended over exactly one element from each

Conjugate class.

3.4 The Class Equation.

Let GG be any group and we know that GG acts on itself by conjugation
action. Then the partition P = {c(a)/a € C'} of G under this conjugation
action is called the class decomposition of G' and the equation

6] = Fuee 6 N(@)]
is called as the class equation of the group G Where C' is a subset of G' con-
taining exactly one element from each conjugate class.
3.4.1 Definition.
Let G be a group and S be a subset of G. If x € GG, then the set
18y = {z"tsx/s € S}
is called a conjugate of S.
3.4.2 Definition.

Let S, T be two subsets of a group G. Then T is said to be conjugate to S
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if there exists x € G such that T = xSz~ .
3.4.3 Remark.
The relation being ”conjugate” is an equivalence relation in the power set
P(G) of the group G.
Let ~ be the relation conjugate to that is S, T € P(G), then S ~ T if and
only if T'= xSz~ for some z € G.
Clearly for S € P(G), S = eSe~!. Therefore we have S ~ S and hence ~ is
reflexive.
Let S,T € P(G) and S ~ T then S = 2Tz for some x € G.
Thus we have T = 2~ 'Sz, 2z € G.
That is z 'S(z™ )1 =T, 27! € G.
which implies T' ~ S.
Now let S, T,U € P(G) such that S ~ T, T ~ U.
then S = 2Tz !,z € G.
T=yUy 1t yed.

Therefore S = 2Tz~ 1.

= ayUy ta=t.

=ayU(zy) ', 2y € G.
showing that S ~ U.
Hence the relation 'conjugate’ is an equivalence relation.
3.4.4 Theorem:
Let G be a group. For any subset S of G |C(S)| = [G : N(S)], where
N(S) ={z € Glz7'Sz = S}
Proof.
Given that G is a group and let P(G) be its power set.
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We know that G acts as P(G) by the action 'conjugation’, given by
r*S={xSz™!: 2z €S} where S CG.
Define a relation ~ on P(G) as follows. For S,7 € P(G), S ~ T <
S = 2Tx ! for some z € G.
Clearly ' ~' is an equivalence relation and partitions P(G) into equivalence
classes.
P(G) =JC(S), S C G and the union is disjoint.
Now define a mapping o : C(S) — % by o(zSz™1) = xN(S),x € G.
Clearly o is one-one.
Infact if o(zSz™") = o(ySy™!), for any z,y € G.
= xN(S) = yN(S)
= y laN(S) = N(9)
= y 'z € N(9)
=y Sy lz)t =9
= ySy ! = xSx~!
Proving o is one-one.
o is onto.
For any xN(S) € %, there exists * € G and xSz~! € C(S) such that
o(zSx™1) = £N(S) showing that o is onto.
Therefore |C(5)| = ‘% = [G: N(9)].
That is |C(9)] = [G : N(9)].
3.4.5 Theorem.

Let G be a group and x € G. Then.
(i) C(z)={z} &z € Z(G), Clearly z € C(x).
(ii) x € Z(G) & N(z) = G.

42



(iii) z ¢ Z(G) < N(z) is a proper subgroup of G.
Proof.
Given that G is a group and z € G. We have C(z) = {aza™'/a € G}.
(i) First suppose C(z) = {z}.
For any a € G we have aza™' = x. That is ax = xa showing that z € Z(G).
Conversely suppose that a € Z(G).
Then xa = ax for all x € G.
That is a = zax™! for all z € G.
Now C(z) = {axa™"/a € G}
= {zaa"/a € G}
= {z}
(i) z € Z(G) & C(x) ={z}
& [G:N(z)] =|C(2) =1
< N(x)=G
(iii) = ¢ Z(G) < Clz) # {r}
& [G:N(z)] =|C(z)] > 1
< N(z) is a proper subgroup of G.
Hence the theorem.
3.4.6 Theorem
Let G be a finite group then
Gl =12(@)+ ¥ |G N(z)
where C' contains exactly one element from each conjugate class with more
than one element.
Proof.
Given that G is a finite group. We know that the relation conjugacy on G is
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an equivalence relation and it partitions G' into mutually disjoint equivalent
classes. The equivalence class of an element z € G is C(z), the conjugacy
class of = .

Therefore G = |J C(z). ——(1).
zeC’
Where C" contains exactly one element from each conjugate class.

Also we have |C(z)| = [G : N(z)].
On separating those conjugation classes which contains exactly one element
and those which contain more than one element and using the fact that
Cz) ={z} &z € Z(G).
We have G = Z(G)J U C(z) —(2)

Where C contains exactly one elemeng efrcom each conjugate cases having more
than one element.
The equation (2) is known as the class equation for group G.
Since G is finite,
G| = 12(G)] +z§C|C(x)|-

=|Z(@Q)| +x§0 [G: N(z)]. ——(3)
The equation (3) is known as the class equation for finite group G.
3.4.7 Theorem.
Let G be a finite group of order p”, where p is prime and n > 0. Then
(i) G has a non trivial centre Z(G) = Z
(i) Z N N is non trivial for any non trivial normal subgroup N of G.
(iii) If H is a proper subgroup of G, then H is properly contained in N(H);
hence, if H is a subgroup of order p"~!, then H <1 G.
Proof.

Given that G is a group of order p™.
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The class equation of G is

Gl =p" =|Z|+ ZC [G:N@)]——— (1)

HAS

Where Z = Z(G) and C is a subset of G exactly one element x from each
conjugate class not contained in 7.
If x ¢ Z then N(x) is a proper subgroup of G then by Lagrange’s theorem,
IN@)I/IG] = IN@)|/p"
Since N(z) # G, |N(z)| < p", therefore |N(z)| =p", r < n.

(G N@)] = iy = 5 =" -2)

where n —r > 1.

= p divides [G : N(z)] because p divides right hand side of equation (2) for
each x ¢ Z.

= p divides Y [G: N(z)].

zeC

We have p/|G| and p/ %;; (G : N(x)].
= p/|Z] (from (1))

= |Z] > 2

= 24}

= Z = Z(@) is non trivial.
(ii) We have from the class equation of G.

G=ZU(U C(x)). (disjoint)
zeC
Let N be any non trivial normal subgroup of G.

Then N = GO\ N = (ZU ( LEJCC<:L‘))> NN.
= N=ZnN)U(U C(z)UN)
zeC
= [N|=|ZUN| + ;C}C(x)mw —(3)
We now prove that for any z € C, C(z) "N = ¢ or C(z).
If x € N then C(z) C N
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Since x € N then gr =29 V g € G.
= grg =12 Vgeaq.

But C(z) = {gzg~"' /g € G}

={x}.
That is gzg~' € C(x) then grg~' = x € N which imply C(x) C N.
And further note that z ¢ N then aza ™' ¢ N Va € G.

= Cx)NN=2¢

That isifx € N = C(z) C N

andif x ¢ N = C(z) NN =¢
Hence for every xz € C
C(z)NN = ¢ or C(x)
|C(z)NN|=0or |C(x)]
and |C(z) " N[ =0or [G: N(z)]
But [e(x)| = [G : N ()]
e [C@) AN| = e [6 N (@)
= P/ Ysec (G N(@)] (by (1))
= b/ Toee IC@) NN
Since N is a proper normal subgroup of G.
= |[N| =p" for some 0 <r <n
= p/IN|
Then from (3), we have p/|Z N N|
= |ZNN|>2
= Z NN # {e}
= Z N N is nontrivial for any nontrivial normal subgroup N of G.

(iii) Now let H be a proper subgroup of G.
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Let K be a maximal normal subgroup of G' contained in H.

Then K is a proper normal subgroup of G and hence the quotient group %
os of order p” where 0 < r < n.

Then by (1) of the theorem

% has a nontrivial center say %

Clearly K <L and K # L

Now % < % implies L < G.

(by correspondence theorem)

If L is contained in H that is L C H, then K C L C H C G which implies
K < L < G which is a contradiction to the fact that K is a maximal normal
subgroup of G. contained in H.

Hence L is not contained in H.

We now show that L C N(H).

Let h € H,l € L. We have % is the center of %

Therefore the elements of % and % commute.

Hence (hK)(IK) = (IK)(hK)

= hiK = lhK

= h UK =K

= h U hle K

But K C H. Thus h™'"'hl € H

= ["'hl € hH

= ["'hle H

= hl e lH

= HICIH

Similarly [H C Hl V1€ L.
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Therefore [H = Hl V1€ L.

= ["'Hl=H VIie€L.

=le N(H).

which gives that L C N(H).

If N(H) = H then L C H, again a contradiction to L ¢ H.

Hence H # N(H)

= H is properly contained in N(H).

That is H C N(H).

H C N(H) = |H| <|N(H)| and |H| divides |N(H)| when G is finite.

If H is a proper subgroup of order p"~! that is |H| = p"~! then |N(H)| = p".

= NH)=G
=gcHx '=H VzeqG
= H<d(.

3.4.8 Corollary

Every group of order p? is abelian, where p is a prime.

Proof.

Let G be a group of order p?, where p is prime.

If possible assume that G is non abelian. Also by theorem 4.2.5, G' has a
nontrivial center Z(G) = Z and |Z| # 1.

Now |Z|/|G]| (by Lagranges theorem)
= |Z| /p*
= |Z] =por p*. (121> 1)

If | Z| = p? then Z = G and hence G will be abelian, which is a contradiction.
Therefore |Z| = p
Let a € Gand a ¢ Z.
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Now x € Z = xa = ax

= x € N(a)

Thus Z C N(a).

Also note that Z # N(a)

If Z = N(a) then a € Z, which is not possible .

= |N(a)|/p*.
= |N(a)| = p* some |Z| < |N(a)]
= N(a) =G

=a9=ga Ygei
= a € Z, which is a contradiction.
Hence G is abelian.
3.4.9 Remark.
For a fixed g € G, we define X, = {z € G/gz = x}.
3.4.10 Burnside Theorem.
Let G be a finite group acting on a finite set X. Then the number k of orbits
in X under G is k = |1a > Xl
Proof. =
Let G be a finite group acting on a finite set X.
Let * be the action of G on X that is
% : G x X — X is the mapping satisfying
ax*(bxx)=(ab)xx
exrx=x VabeG, xeX.
Let S={(g,2) € Gx X/gxa=u}
={(9,2) € G x X Jgz =z}
For any fixed g € GG, we have
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X,={reX/gxz=2a}

={z € X /g =z}
For any x € X we have Gx:{geG/g*x:x}

={g € G/gx =x}

Therefore for any fixed x € X, the number of ordered pairs (g,x) in S is
exactly equal to |G|
Thus Z | Xy = |S] = Z G| ———— (1)
By theorem 3.3.7, we have

(i) X = U Gz, where C is a subset of X containing exactly one element
xeC
from each orbit.

(i) |Ga| = [G:G.] = 15

G |

Therefore ) |G| = Z (By 1)

zeX X

=161 =
_EY Y

acC z€Ga
=|G|( ;c'G“' —i—m—i-...ﬁ) (|Gal times).
— |Gal
=161 2 Gl
=[Gl X1

acC

— |G|k

where k is the number of distinct orbits of X under G.
From (1), ¥ |X,| = [Glk
geG
= k=1 21X,
geG
Hence the theorem.
3.4.11 Example

Let G be a group containing an element of finite order n > 1 and exactly

two conjugate classes, prove that |G| = 2.
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Sol.

Let a € G such that a # e and o(a) = n. Consider the conjugate classes {e}
and C'(a) then G = {e} U C(a).

Let b # e be any other element of G. Then b € C(a) = b = gag~' for some

ge G
= o(b) = o(gag™") = o(a)
= o(b) =n

Since o(a) = n

We shall show that n is a prime. Suppose m|n then n = mk for some integer
k. Consider the cyclic group G generated by a then a" = e = o™ = ¢
(at)m = ¢

Let b = a* then b™ = ¢

= o(b) =m

But b € C(a) = o(b) = o(a) =n

=m=n

Showing that n is prime.

We shall prove that a? = e

Suppose a? # e then a* € C(a)

= a® = raz~! for some x € G.

We now claim that a? = zlazr™

For i = 1, we have a® = zaz~!

Showing that the result is true for i = 1.

Now assume that the result is true for i = k

k —
CL2 :xkaac k.

k+1 2k

) kE ok
Consider a? =a%".2=a*"a?
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= (z*ax%)(2Faz™F)

— kg2 k

= 2¥(zaxY)a~*

k+1 k+1)

= gkt
By induction, a®' = zlaz~". for i > 1
On taking ¢ = n, we have

2n n

a* = x"ax™™. = eae = a since " = e

=a"al=e

=a"—-1=e¢

But o(a) = n therefore n/2" — 1

which is not possible since n is a prime.

Therefore a> =e Va € G

= (§ is abelian.

C(a) = {gag™" /g € G} = {a}

Thus G = {e} U {a} = {e,a}

proving that |G| = 2.

3.4.12 Example

Let H be a subgroup of a finite group G. Let A, B € P(G), the power set
of G. Define A to be conjugate to B with respect to H. If B = hAh~! for
some h € H. Then

(i) Cojugacy defined in P(G) is an equivalence relation.

(ii) If Cy(A) is the equivalence class of A € P(G) (called the conjugate class
of A with respect to H),

Then

Cu(A)] = [H : HON(A)]
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Proof.

(i) The result is true by theorem 3.3.7 by taking X = P(G) and H to be
the group that acts on X by conjugation.

(ii) Let o:Cg(A) — Hm+(A) defined by o(hAR™') = h(H N N(A))

o is onto : Since for every h(H N N(A)) there exists h € H such that
o(hAh™") = h(H N N(A))

o 1s one-one:

o(hiAhTY) = o(hyAhy 1Y)

= hi(HNN(A)) = ho(HNN(A))

= HNN(A) = h'ho(H N N(A))

= hi'hy € N(A)

= hi'hyA = AhT'hy

= hAhy!' = ho Ahy!

= 0 1S one-one.

Therefore o is bijective.

|Cr(A)| = |Hm%(A)| == [H: HNN(A)

T |HNN(A)]

3.5 Summary:
In section 3.2, we have defined the action of a group G on a set X and pro-
vided number of illustrations. Also we proved Cayley’s theorem. In section
3.3 we have defined the notions of orbits and stabilizers of an element in a
group G. Also we have defined the action of G on itself by conjugacy relation.
In section 3.4, we have derived the class equation of a finite group and using
this we established that every group of order p? (p is a prime) is abelian. At

the end of this section we have proved Burnside theorem.
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3.6 Model Examination Questions.
(1). Find the number of conjugate classes of the element (1 3) in Dy.
(2). Determine the number of conjugate classes of the symmetric group of
degree 3 and verify that the number of elements in each conjugate class is a
divisor of the order of group.
(3). In S,, , find the number of r-cycles.
Using this, find the number of conjugates of the r-cycle (12...r) in S,,.
(4). Find all the conjugate classes in Sj.
(5) Let G be a finite group with a normal subgroup N such that (|N|, %) =
1. Show that every element order dividing |N| is contained in V.
(6) If G be a group of order 125, then prove that there exists a # e, a € G
such that ax = xa for all z € G.
(7) Show that every group of order 169 is abelian .
(8) Let G be a group, show that Z(G) = | (L{\ C(x), v €G.
C(z)|=1

3.7 Glossary.

Action of a group, G-set, Orbit, Stabilizer, Conjugacy class.Class equation ,

Burnside theorem
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LESSON-04

NORMAL SERIES AND SOLVABLE
GROUPS

4.1 Introduction.

In this lesson we define normal and composition series of a group G.
Moreover we establish the equivalence of composition series of a finite group(The
Jordan-Holder theorem). Further we deduce the fundamental theorem of
arithmetic as a consequence of Jordan-Holder theorem.

The class of groups which appears in the theory of polynomial equations is
the class of solvable groups. In this lesson we also characterise solvable group.
Especially the terminology of solvability comes from the correspondence be-
tween the groups and the polynomials which can be solvable by radicals.
Here the solvability of polynomials means that there is an algebraic formula
for the roots.

4.2 Definition: Normal Series.

Let G be a group. A sequence (Gy, G ...G,) of subgroups of a group
G is called a normal series (or subnormal series) of G if

{e}=GocGicGyC...CG1CG,. =G

Gy
Gi—1’

where (G;_; is a normal subgroup of GG;, 1 < i < r. The quotient groups
1 < ¢ < r are called the factors of normal series.

4.2.1 Remark:

(i) For any group G, {e} = Gy C G; = G is trivially a normal series of G.
(ii) Any series of subgroups of an abelian group is a normal series.

(iii) {0} € 20Z C 10Z C 5Z C Z is a normal series of Z.

4.2.2 Definition: Composition Series :

A normal series (G, G . .. G,) of a group G is said to be a composition series
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of G if its factors G?jl’ 1 <4 <r are all simple groups.

The factors G/G-il’ 1 <17 < r are called composition factors of G.

4.2.3 Remarks:

(i) G?_il is simple if and only if there are no normal subgroups between G;_;
and G;, 1 <i <r in the composition series of G.
(ii) For any simple group G, {e} = Gy C G; = G is the only composition
series of G.
4.2.4 Theorem:
Every finite group has a composition series.
Proof.
Let G be a finite group.
We prove the theorem by using induction on the order of G.
If |G| =1 then G = {e} and (G) is the only composition series of G' without
composition factors, proving the result in this case.
If G is a simple group, then its only normal subgroups are Gy = {e} and
G = G. Now we have
{e} =Gy C G1 =G, Gy <G, G% is simple.

Also note that (Gg, G) is the only composition series of G proving the result
in this case.
Now suppose that |G| > 1 and G is not simple and further assume that the
result is true for all groups of order less than |G].
As (G is not simple, it has at least one proper normal subgroup.

Let H be the maximal normal subgroup of G. Since |H| < |G|, by in-
duction hypothesis, H has a composition series say

{e}=HyCH CHyC...CH.=H
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G
H

Also we have % is simple.
Therefore
{e} =Hy C HH C Hy C...C H. = H C G is a composition series for G.
Hence the theorem.
4.2.5 Example:
For the group S5, we have
{e} C{e, (123),(132)} C S;
is a composition series where
Ss = {e, (123), (132), (12), (23), (13)}
4.2.6 Example:

We know that the Dihedral group D, is generated by ¢ and 7 where
1 2 3 4

1 3 4 2

ot =e=7%and 70 = 0®7 here 0 = (1234), 7 =

ir, 037}

That is Dy = {e,0,0%,0% 7,07, 0
For this group Dy,
{e} C {e,0?} C{e,0,0% 0%} C Dy is a composition series.
Also {e} C <0?> C <o0? 7> C D, is another composition series for Dj.
4.2.7 Example:
We know that the Quaternion group @) is generated by a, b with the defining
relations a* = b* = e, b? = a?, b~ 'ab = a>.
We can write () in terms of matrices as follows
B 10 V-1 0 0 1 0 V-1 0
Q_{01’o\/—_1’—10’¢—_1 0
—/=1 0 |
0 =1/ \1 0 V=1 0
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10 v—1 0 0 V-1

Here e = ,a = b=
01 0 V-1 V-1 0
Clearly the Quaternion group (@ is of order 8 and all of its subgroups
are normal. Also nothe that the cyclic groups [a?] and [a] are subgroups of
order 2 and 4 respectively.
Further observe that
{e}cle’lclac@

is a normal series for @ since [ [a] : [a?] | =2=[Q : [d] ].

Also each factor of the series is isomorphic to the cyclic group of order
2, which is simple.
Hence {e} C [a?] C [a] C @ is a composition series of Q.
4.2.8 Example:
{0} c {0,10} c {0,5,10,15} C {0,1,2,...19} = % is a normal series of

z . z
<205 SMICE 555

is an abelian group. Further the factors of this composition
series are respectively isomorphic to cyclic groups of orders 2, 2 and 5, which
are simple. Thus

S = (Go,G1,G2,G3) is a composition series of % where Gy = {0},
G =[10], Gy = [5], G3 = =Z

<20>"
Further note that S° = (G, G, Gy, G3) is also a composition series of <2—ZO>
where Gy = [0], G} = [10], G = [2], Gy = —Z—. Here the composition

factors of the series are respectively isomorphic to the cyclic groups of orders
2, 5 and 2.

4.3 Definition: Equivalence of Normal Series

Two normal series S = (G, G1,Gy...G,) and S = (G, G, Gy, ... G,) of

G are siad to be equivalent, written S ~ S, if the factors of one series are
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isomorphic to the factors of the other after some permutation; that is,

!
G; Gotiy

i~ 2 =12 ...r
G, Go(iy—1’ 1

for some o € S,.

4.3.1 Example:

The normal (composition) series S = (Go, G1, Ga, G3) and S = (G, G, Gy, Gy)
of —Z— of the example (4.3.8) are equivalent.

<20>

G~ _Z Gy~ _Z G3 ~ _Z S
G = e Sas oY% and g
!

G, Ga [3

Now observe that —+i— ~ GA
G,_4 o(i)—1

S
A
no
Vv

!
Z Gy Z

~ _Z

<> G <5>7

12
|

~

1 2 3
where o = € S3.

1 3 2
Therefore we have S ~ 5.

4.3.2 Lemma
The relation ’equivalence’ of normal series on the set of all normal series of
a group G is an equivalence relation.
Proof.
Let G be a group and § be the set of all normal series of G.
Let S = (Go, G1,Gy...G) S = (Gy, G, Gy, ... G, S = (Gy, G, Gy, ... G
be elements in S.
We have ’ ~ the equivalence of normal series on S defined by S «~ S’ if

G Goi)

i ~ _ o) y
T 1 < i <r for some o € S,.

(i) Let S be any normal series of G then clearly

Gi ~ Gi _ Gom N . .
6T e T G where o(i) =1 Vi, 1 <i<r.
Thus S ~ S5 V S €8 and hence ~ is reflexive.

(ii) Now let S ~ S that is
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3 ~

G;_l = Go@i)-1

< Go(i)

, 1 <i<rforsomeo€S,.

From this we write

G/—1 ; .
< () ’ 1 S j S r
o= 1)1

where o(i) = j < o (j) =i,0 € 5,.

Gj_1 -

Showing that ' ~' is symmetric.
(iii) Now let S~ S', S ~ S,

Ned Goii
That is —i- ~ <@

1 Gow-1’
” G,
G. (i .
and & ~ — @_ 1< <rfor some o,7 € S,.
i—1 GT(Z‘)*I
!
G G_,. G ) G )
Now —i ~ 7(%) ~ o(r(®)) _ (o1)i
G, , G’ Go(r(i))—1 Goryiz1

T(i)—1

where o7 € S,, which proves that S ~ S".

Therefore ' ~' is transitive.

Hence ' ~' is an equivalence relation on S, which completes the proof.

The equivalence of composition series as proved in the example 5.2.1 is not

a surprising result. More generally we have the following result, in case of

finite groups.

4.3.3 Theorem (Jordan-Holder theorem)

Any two composition series of a finite group are equivalent.

Proof.

Let G be a finite group.

Then G has a composition series. We prove the theorem by using induction

on |G|. Suppose the theorem is true for all groups of order less than |G|.

Now consider any two composition series of GG say
Si:{e}=GoCcGiCcGyC...CG,=G——— (1)
Se:{e}=HyCH CH,C...CH;=G—— (2)
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Now consider two cases G,y = H,_1 or G,_1 # H,
Case(i) First let G,_; = H,_; then

!

S, {e}=GoCcGiCcGyC...CG,
Sy,:{ey=HycH CcHyC...C H._,
That is Si, S; are obtained from Sp, .S after removing G from the series S;
and Ss.
Now S, S, are composition series for G,_;.

Since |G,_1| < |G|, we have by induction hypothesis S} ~ S,. This
implies r — 1 = s — 1 from which we get r = s and hence the composition

/ . . oy /.
factors of S| are isomorphic to the composition factors of S, in some order.

In S; and Sy, we have r = s and 7** composition factor in S; and S,

G
G'rfl

is since G,_1 = H,_1.
Clearly the r'" composition factors of S; and S, are isomorphic since
every group is isomorphic to itself. Therefore the composition factors of Sy
are isomorphic to the composition factors of S5 in some order as the first
r — 1 composition factors of S; and Sy are the composition factors of S, S,
and ™ composition factor of S; and S, is %

Hence S; ~ S, in this case.
Case(ii) Let G,_1 # H,_1, that is G,_; and H,_; are distinct maximal nor-
mal subgroups of G.

Let K = G,_1 N Hs_1. Therefore K is a maximal normal subgroup of
G,—1 and also of Hy_; (If H, K are different maximal normal subgroups of
G, then H N K is a maximal normal subgroup of H and also of K)

Since | K| < |G,-1] < G, by induction hypothesis, K has a composition

series say {e} =Ko C K; C...C K; =K.
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Now this gives two more composition series of G.
Sy {e}=K¢ycKyC..CKCG,.;,CG, =G ———(3)
Sy:{e}=KycKyC...CKCH; 1 CHy;=G——— (4)
Also G,_1Hs 1 is a normal subgroup of G containing H, ;. Since
G,_1, H,_1 are normal subgroups of G we must have G,_1H,_; = G.

Therefore by second isomorphism theorm

Hs—1 ~ Gr_1Hs—1
Gr_1NHs—1 — Gr—1
: Hs—l ~ G
That is = ~ 7
Gr—l ~ Gr—le—l
Gr_1ﬂHs—1 - Hs—l ’

: Gro1 ~ G
That is = X g

and

Also recall that Klj_"l ~ Klf_il since S ~ S.

Gr—l _ G'r—l ~ G — G'r
and == = T @ g =gt

Gr _ G ~ Hsfl _ H5,1
and Gr—1  Gr—1 — K T Kg

This shows that the composition factors of S5 and S4 are isomorphic in some

order. Therefore S3 ~ Sj.

Also by case (i) 51 ~ S35 and Sy ~ S;.

Note that

r=The number of composition factors of ;.
=The number of composition factors of Sj.
=The number of composition factors of Sj.
=The number of composition factors of Ss.
=s.

we have S ~ S5 and S5 ~ Sy.

Also Sy ~ Sy

Thus we have S5 ~ Sy (since ' ~' is transitive)
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Now again Sy ~ S3, S35 ~ Sy implies S ~ Ss.

Proving that any two composition series of a finite group G are equivalent.
Hence the theorem.

4.3.4 Example:

An abelian group G has a composition series if and only if G is finite.
Proof.

Let G be an abelian group.

If GG is finite, then it has a composition series, since every finite group has a

composition series. Conversely suppose that G has a composition series say

{e}=GocGicGyC...CG1CG, =G

Since G is abelian, all the composition factors Gle (1 <i <r). are abelian

and simple.

we now show that ijl is a cyclic group of prime order p; (1 <1i <r).If G?jl

has a proper subgroup, then it is a proper normal subgroup of o - since =

is abelian.

which contradicts the fact that

i is simple. Thus - has no proper sub-

G
Gi_1 Gi—1
groups.

Also we know that any non trivial simple group is cyclic and is of prime

order.
Therefore each quotient group GG_jl (1 <i<r)iscycle and is of prime order
pi (say ) for 1 <i<r,
T T G;
Now [[iy pi = ILiz1 |55
_1Gi1[|G2| |Gs|  |Groa| [Gr|
Go |G1]|Ga] " [Gr 2| |Gr1]
_ 1G] _ G|

~ |Gol

Thus |G| = pips - - . pr
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proving that G is a finite group.
(Further note that the composition factors of a finite abelian group G are
determined by the prime factors of |G| ).

Hence the theorem.
4.3.5 Example
If a cyclic group has exactly one composition series, then it is a p-group.
Proof.
Let G be a cyclic group of order pips...p, where pips...p, are primes not
necessarily distinct.
Let G = [a].
But we know that every finite cyclic group G has exactly one subgroup of
order d where d is a divisor of order of G, namely |G].
Thus G has a unique subgroup G; of order pips ...p; namely
G = [aPitPit2-Pr] for § = 1,2, ... — 1
More explicitly

G, = [ap2p3~~pr]

G2 — [ap:sm---pr]

Gr1 = [aPr]
and G, = G.
As a convention, we have Gy = {e}
Thus we have a composition series
{e}=GoCcGiCGyC...G,o1 CG, =G

G,
such that ‘ o=

=p;fori=1,2...r.

Also every permutation of the prime factors of |G| determines a composition
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series.

But it is given that G has a unique composition series.

Thus this is possible if and only if py = ps = ... = p,

Therefore |G| = p", showing that G is p— group.

4.3.6 Example Let GG be a group of order p", p is a prime. Then G has a

composition series such that all its composition factors are of order p.

Proof.

We have |G| = p", where p is prime.

Since G is finite, G has a composition series
{e}=GocGiCcGyC...CG,1CG, =G

where |G| is a power of p, 1 <7 <.

Therefore any composition factor Gq_il is of order p* for some k > 0 and will

have a non trivial center since a group of prime power order has a non trivial

center.

As G?il is simple, its center must be the group G

G;
Gi-1 i

which implies g s
abelian.
Thus each composition factor of G is simple abelian and hence is a group of
order p.

Hence the theorem.
4.3.7 Example
Give an example of two non isomorphic finite groups GG which have isomor-

phic composition series.

Proof.

_Z_

Consider the groups Sz and —&

Clearly these two are not isomorphic since S3 is not cyclic but % is cyclic
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We know that

S3 = {e, (123), (132), (12), (13), (23) }
write N = {e, (123)(132)}
Now

{e} C N C S5 is a composition series of G. Let H = {0, 2,4}

©F T Wm0
Sy~ 2 2/0)
and G >~ G5 > Zp~

Hence the result.

4.3.8 Example

The Jordan-Holder theorem implies the fundamental theorem of arithmetic.
Proof.

The fundamental theorem of arithmetic states that if n is an integer such that
n > 1 then n = p1py...p. where py,po,...p, are primes (not necessarily dis-
tinct). Further this factorization is unique in the sense that if n = ¢1qs . . . ¢s
where ¢1, qo, . ..qs are primes then » = s and the p;’s are just the ¢;’s rear-
ranged (if necessary).

Let G be a cyclic group of order n. Suppose that n has two factorisa-
tions into primes say n = p1ps...p, and n = ¢14¢z . . . ¢s. Then G has a unique
subgroup of order n = p1py...p;, 1 <0 <.

Thus

{e} =Gy Cc Gy C Gy C ... C G, C G, =G is a composition series of G

and the factors G?il are cyclic groups of order p; (1 <i <r).
Similarly G has a composition series
{e} =G, C Gy C Gy C...C G, =G whose composition factors are cyclic

groups of order ¢; (1 <1i <s).
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But from the Jordan-Holder theorem, we know that any two composition

series of finite groups are equivalent.

G,

Therefore, we have r = s and the composition factors & - are isomor-
P

/

. " G .
phic to the composition factors —~— in some order.
i—1

Thus we have r = s and p; = ¢; (if hence we reorder ¢.s)

Hence the result.
4.4 Derived group:

Let G be a group. For any a,b € G aba'b™! is called a commutator
in G. The subgroup of G generated by the set S of all commutators in G is
called the commutator subgroup of G or the derived group of G. It is denoted
by G
If S = {aba"'b"'/a,b € G}.

Then G~ = [S].
= the set of all possible finite products of elements of S.
={r129... 2 /x; € S, n>1}
4.4.1 Remark:
Let G be a group and G be the derived group of G. Then we have the
following.
i) G «a.
(ii) G/G" is a abelian.
(iii) If H < G then G/H is abelian if and only if G C H.
(iv) If G is abelian then G' = {e} where e is the identity of G.
4.4.2 Definition: n'* Derived group of G
Let n be any positive integer. Then the n'* derived group of a group G is

denoted by G™ and is defined as follows.
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GO =g, G™ = (G VY, n>1.
Clearly G™ < G and GC(;:L)I) is abelian.

(Inview of the remark 6.2.1).

4.5 definition: Solvable Group.

A group G is said to be solvable if there exists a positive integer k£ such
that G*®) = {e}.
4.5.1 Theorem:
Every abelian group is solvable
Proof.
Let G be an abelian group.
Let S be the set of all commutators in GG that is
S ={aba*b"t/a,b € G}.

~{e)
since G is abelian.
Now G’ = the derived group of G.
=[5].

=The smallest subgroup of G generated by S.
= {e}.
This implies G’ = {e}.
Proving that G = G' = {e}.
Hence the abelian group G is solvable.
4.5.2 Theorem
Let G be a group G. Then every subgroup of G and every homomorphic
image of G are solvable. Conversely if N is a normal subgroup of G such

that N and % are solvable then G is solvable.
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Proof.
Let G be a solvable group.
Therefore G*) = {e} for some positive integer k.
(i) Let H be any subgroup of G
Also let S = {aba~'b"1/a,b € H}.
and S = {aba~'b"'/a,b € G} be the set of commutators in H and G respec-
tively.
Clearly S C S which implies S C [S].
Therefore H C G'.
That is HY ¢ G,
Which means that if H is a subgroup of G then the derived group H® is a
subgroup of G,
Now assume that H® c G for some positive integer i.
Therefore H® < G®' which gives HHD ¢ GUHD,
Hence by the principle of mathematical induction, it follows that H™ c G™
for any positive integer n.
Now we have H*) ¢ G®) = {e}.
Proving that every subgroup of a solvable group is solvable.
(i) Now let ¢ : G — K be an epimorphism. That is ¢ is onto homomor-
phism.
K = ¢(@G), the homomorphic image of G, is a group.
Let A= {aba='b""/a,b € G} and A = {wyx"'y ' /z,y € $(G)}.
Now for any a,b € GG and using the fact that ¢ is a homomorphism, we have
¢(aba™'b™") = p(a)d(b)p(a™)(b~")
— o(@)o(b)p(a) o)
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Proving that the image of commutator in G is a commutator in ¢(G).
Now ¢(A) = {#(aba"'b"1) /a,b € G}
={¢(a)o(b)p(a™")p(b7")/a,b € G}
=A
Since ¢ is surjective.
Further
$(G") = ¢([A]).
={o(r122...2,)/ x; € A, n > 1}.
={0(x1)¢(22), ... d(2n)/ w: € A, n > 1},
={y1y2...yn/ i €A, n>1}.
=[4] = (¢(G))".
Proving that ¢(GW) = (¢(G))(1).
Now assume that ¢(G™) = (qb(G))(m) for some natural number m.
Now 6(G*Y) = o((G™)
~(o(c))
~(@(6)™)
= (e(@)""".
Therefore by the principle of mathematical induction, we have
$(G™) = (¢(G))™ for any n > 1.
As ( is solvable,
(B(G)F = d(G™) = ¢({e}) = {e'}
where € is the identity of ¢(G).
Proving that ¢(G) is solvable which establishes that the homomorphic image
of a solvable group is solvable.

Conversely let N <1 G such that N and % are solvable.
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O]
Then there exists positive integers k, [ such that N®*) = {¢} and (%)

where € is the identity of % namely N.

Let ¢ : G — % be the canonical homomorphism.
That is ¢(x) = Nz.

Clearly ¢ is surjective.

N

That is € is the homomorphic image of G under ¢ (i.e o(G) =

Now for any natural number n,

6(G™) = (4(@)"™
Hence ¢(GY) = (QS(G))U)

=(5)" =04y,
which implies G C ker¢ that is GO c N.
From which we have gb(G(l))(k) c N®
Therefore (GUP) C {e}

Thus we have GU*%) = {e} proving that G is solvable.

In the following theorem, we characterise the solvable groups.

4.5.3 Theorem

%)

{e}

A group G is solvable if and only if G has a normal series with abelian fac-

tors. Further a finite group is solvable if and only if its composition factors

are cyclic groups of prime orders.

Proof

Let G be a group. We know that the derived group G' of G is a normal

subgroup of GG and is abelian.

Also for any natural number n, we define n'® derived group G™ of a group

G as follows

GO =G G = (G D) forn > 1.
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Also as a convention we get G = G.

Now G™ < GV and ng;)l) is abelian.

(i) First suppose that G is solvable.

Then G*®) = {e} for some natural number k.

Now
{e} =GP aGFD qGED g, . <GV 9GO =G is a normal series of G
and the factors % are abelian for 2 =1,2.. .k

Thus G has a normal series with abelian factors.

Conversely suppose that G has a normal series
{e}=HyCH CHyC...CH.1CH,=G

such that H}(IZ—% is abelian for 1 < i <.

For any a,b € H;

(aba 0N H; 1 = (aH;_1)(bH;_1)(a™*H;_1) (b~ H;_4).
=(aH;_1)(bH;_1)(aH;_1) ' (bH; 1)~

—141i—1-

H;

i lian.
7o 18 abelia

Since
Therefore we have aba='b~! € H,_; from which we get Hil C H;_q for
1< <.

Now G' = H, C H,_,.

Thus by induction we have G® C H,_; for 1 <i < r.

For i = r, we get G") C Hy = {e}

Hence G = {e} proving that G is solvable.

(ii) Now assume that G is a finite group.

Suppose that G is a solvable group. By part (i) G has a normal series.

{e} = Hy C HH C Hy C ... C H,_y C H, = G where each factor HH_il,
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1 < ¢ <ris abelian.

Clearly each -Zi- is finite and H,;_; is the identity of - and since each

H;_1 Hi—
finite group has a composition series.
In particular HHil has a composition series.
o
o — Ko K; Ko K, _ _H;
Hi H; 1 C H; 1 C H;1 c...C H; 1 H;_1°
Kj [ Hi1

and the composition factors ———— are simple.
Kj;_1 / H; 4

H;

P is abelian. Also we know that

Further these factors are abelian since

every simple abelian group is of prime order and hence cyclic.

K; [ Hi1
Therefore — 24— is of prime order and thus cyclic, from which it follows
K 1 / H; 4

that KK_—jl, 1 < j < nis of prime order and cyclic.
i

Further gj—:ll Q-2 imply K;_; < Kj for 1 <j <mn.

H; 4
Thus corresponding to the composition series of HH_"l, we get
H_ =K< K\ <xKy«...<K,=H,

K

ron - is of prime order and cyclic.
pa

where K;_; < K; and
Now, on inserting the corresponding subgroups of H; between H; | and H;
(1 < i < r) in the normal series of G, we get a composition series of G in
which each composition factor is a cyclic group of prime order.

Conversely suppose G has a composition series

{e}=GoCcGiCcGyC...CG, =G

G;
Gi—1

such that each of its composition factors , 1 < < ris cyclic of prime
order. As each composition series is a normal series and every cyclic group
is abelian, we have a normal series for the group G and each factor of this

series is abelian.
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Therefore GG is solvable by the first part. Hence the theorem.

4.5.4 Example:

The symmetric group Ss is solvable.

Proof.

We know the symmetric group

Ss = {e,a,a? b,ab, a’b}

with the defining relation a® = e = b2, ba = a®b

Clearly N = [a] = {e, a, a®} is a cyclic subgroup of S of order 3.

Now we have {e} C N C S5

Clearly {e} << N and since index of N in S3 in 2 we have N <1 Ss.

Further %, % are isomorphic to % and % respectively.

Thus S3 has a normal series with abelian factors and hence S; is solvable (in
view of theorem 6.3.3)

4.5.5 Example:

The dihedral group D,, is solvable.

Proof.

We know that the dihedral group D, is of order 2n generated by two elements

o, 7 satisfying 0" = e = 72 and 70 = 0”7 where ¢ = (12...n) and
1 2 ... n

T =
1 n ... 2

Now

{e} C K =<0 >={e,0,0%...0" '} C D,

is a normal series for D,, and [D,, : K| = 2, hence K < D,,.

Further note that the factors in the above series %, % are cyclic groups of

orders n and 2 respectively.

Therefore D,, has normal series with abelian factors, proving that D,, is solv-
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able.

4.5.6 Example:

A group of prime power order is solvable.

Sol.

Let G be a group of order p" where p is a prime then G has composition

series such that all its composition factors are of order p. Since a group of

prime order is cyclic, G has a composition series such that all its composition

factors are cyclic groups of prime order.

Thus G is solvable.

4.5.7 Example:

If M is a minimal normal subgroup of a finite solvable group G then M is a

cyclic group of order p.

Sol.

Given that G is a finite solvable group. Therefore G has a composition series
{e}=GoCcGiCcGyC...CG, =G

whose composition factors are cyclic groups of prime orders. Since M is the

minimal normal subgroup of G we must have G; = M in the composition

series of GG. Then the composition factor % = M is a cyclic group of order

p.

Hence the result.

4.5.8 Example:

A simple solvable group is cyclic.

Proof.

Let G be a simple solvable group then {e} C G is the only normal series and

its only factor % = ( is abelian thus G is a simple abelian group and this
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implies G is of prime order.
Hence G is cyclic.
4.5.9 Example:
Let A, B are groups then A x B is solvable if and only if both A, B are solv-
able.
Proof.
Given that A, B are groups. Then A x B is a group under coordinate wise
binary operation namely
(a,b).(c,d) = (ac, bd) for all (a,b),(c,d) € A x B.

If ey, e5 are the identities of A, B then (eq, e3) is the identity of A x B and the
inverse of (a,b) is denoted by (a,b)! and is given by (a,b)™' = (a1, b71).
This A x B is called as the direct product of groups A and B.
First we prove the following results.
(i) {e1} x B<AxB

Ax{e}<AXB
(i) {1} xB~B

A x {62} ~ A
AxB_ AxB_
{elixB ~ A and AX?@} ~ B.

Proof of (i) Now define a map
¢: Ax B — Bbe ¢((a,b)) =a for all (a,b) € Ax B.
Then clearly ¢ is a surjective homomorphism with ker¢ = {e;} x B.

Therefore by the first homomorphism theorem we have

AXB
{61}><B - B

Similarly A‘i?fi T~ A.

From the above it is clear that {e;} x B<9A x B and A x {es} <A x B.

76



Proof of (ii) Define the map
¥ :{e1} x B— B by ¢¥((e,b)) =b for all (e1,b) € {e;} x B.

Observe that v is an isomorphism.
Hence {e;} x B ~ B.
Similarly A x {e;} ~ A.
Proof of the example:

First suppose that A x B is solvable. Note that A and B are homomor-
phic images of A x B under the homomorphisms (a,b) — a and (a,b) — b.
Now it follows that A, B are solvable, since every homomorphic image of a
solvable group is solvable.

Conversely suppose that A, B are solvable. Now we have to show A x B is

solvable.
As{ei} x B<Ax B, {ei} x B~Band 5~ A
Since A, B are solvable, it follows that {e;} x B, {i% are solvable.

Therefore A x B is solvable (in view of theorem 4.5.3 ).

4.6 Summary

In this lesson, we have introduced the notion of normal series and com-
position series. Also we have established that any two composition series
of a finite group are equivalent. Further we have deduced the fundamental

theorem of arithmetic as a consequence of Jordan-Holder theorem.
In section 4.4, we have defined the derived group. In section 4.5, we have
introduced the notion of solvable group and characterized solvable groups.
Also at the end of the section, we have established that the direct product

(external direct product) of two solvable groups is solvable.
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4.10 Model Examination Questions

(1) Write down a composition series for the Klein four group.

Z

—55= - Show that they are equivalent.

(2) Find all composition series for
(3) If G is a cyclic group such that |G| = pips...p, where p.s are distinct
primes, then show that the number of distinct composition series of G is r!

(4) Let G be a finite group and N < G. Show that G has a composition
series in which N appears as a term.

(5) Find the composition factors of the additive group of integers modulo 8.
4.11 Glossary

Normal series, Composition series, Equivalence of composition series, Jordan-

Holder theorem,Derived group, Solvable group, Direct product.
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LESSON-05

NILPOTENT GROUPS

5.1 Introduction.
In this lesson we define nilpotent group and establish that every group
of prime power order is nilpotent.
5.2 Definition: Center of a group
Let G be a group. We know that the center of group is denoted by Z(G)
and is defined as Z(G) = {zr € G/zg = gz Vg € G}.
Clearly Z(G) is an abelian subgroup of G and further Z(G) is also normal
in G.
Recall that Z(G) = G if and only if G is abelian.
5.3 The nt* center of a group.
We define n*® center of a group G inductively as follows

For n =1, let Z,(G) = Z(G) clearly Z;(G) < G.

Now consider the quotient group %

The center Z < ZI?G)) of ZIC(’G) is again a normal subgroup of %
- el a

That is Z(m) < m

Now there is a unique normal subgroup Z»(G) of G such that

G _ 22(G)
Z(zl(a)) = Zi(G)'
Z3(G)

G
Hence m < m

Continuing in the above manner, we have a unique normal subgroup Z,(G)

of ¢ such that

Zn(G)
Zn—1(G) -

Z(%ﬂG)) for every natural number n > 1 and Z,(G) is
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called as the n'® center of G.
Zfi(f()}) =7 (%1(@) for any natural number n > 1.
For n =0, we set Zy(G) = {e}.
5.3.1 Remark:
Observe that (Z,(G)) C Z,_1(G).
From the definition of Z,(G),
Zn(G) =42 € G/Z, 1(G)xZ, 1(Q)y = Z,, 1(G)yZ,1(G)x Yy € G}.
={z€G/Z, \(Qayz 'yt = Z,1(G) Vy € G}.
={r € Glayz 'y € Z, 1(G) Vy € G.
We have (Z,(G))" = the derived group of Z,(G).
= [9S].
where S = {zyz 'y~ /z,y € Z,(G)}.
From the above S C Z,_1(G).
Therefore showing that (Z,(G)) C Z,_1(G).

Thus we have

5.3.2 Definition: The upper central series of G
The ascending series
{e} = Zy(G) C Z1(G) C Z2(G) C ... C Z,—1(G) ... C Z,(G) C ...
of subgroups of a group G is called the upper central series of G.
5.4 Definition: Nilpotent Group
A group G is said to be nilpotent if Z,,(G) = G for some natural number m.
The smallest m such that Z,,(G) = G is called the class of nilpotency of G.
5.4.1 Example :
(1) Every abelian group G is a nilpotent group of class 1 since
Z(G)=Z(G)=G
5.4.2 Theorem:
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A group of order p" (p is a prime) is nilpotent.
Proof.
Let G be a group and |G| = p™ where p is a prime and n is a natural number.

We know that G has a nontrivial center Z;(G). Therefore |Z;(G)| > 1. Now

the quotient group % is of order p", where r is a natural number with
Z2(G)
Z1(G)

r < n and r has a nontrivial center

Za(
Z1(

Further ‘ g;{ > 1.

|Z2(G)]
1Z1(G)]

From which it follows that |Z;(G)| < |Z2(G)|.

which implies > 1.

Continuing in the above manner, after a finite number of steps, we get

| Zm(G)] = p" for some m < n.

Hence we have Z,,(G) =G

Showing that G is nilpotent.

5.4.3 Theorem

A group G is nilpotent if and only if G has a normal series.
{e}=GocG,Cc...CcG,=GCG

such that G?il C Z(%) foralli=1,2,...m.

Proof.

Let G be a group. For any natural number n, the n'* center of G is denoted

by Z,(G) is a normal subgroup of G such that Zfi(l?é) =7 (ZH_LI(G)) where

Zo(G) = {e}. Also we have Z, 1(G) < Z,(G) and G has a upper central

series
{e} =2Zy(G) C Z1(G) C Z2(G) C ... C Z—1(G) ... C Z,(G) C ...
First suppose that G is a nilpotent group of class m where m is a natural

number then
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{6} = Z()(G) C Zl(G) C Ze(G) cC...C Zm_l(G) C

is the required normal series with the stated condition.

Conversely suppose that GG has a normal series
{G}ZG()CGlCGQ...CGm:G
Gi el ~
a5 C Z<Gi_1>’ 1<i<m
We now claim that G; C Z;(G).

such that

We prove this by induction on .

L G _ G a
For i = 1, we have G_é_{Tl} CZ<{T}>
i.e. G1 C Zl(G)

We assume that G;_1 C Z;_1(G).

From the condition G(_;" Cc Z (GG )
1—1 1—1

For every x € G;, y € G,
We have G, _12G;,_1y = G;_1yG;_1x

which imply zyz~ty~! € Z;_1(Q).
Thus we have z € Z;(G). (By remark 7.4.1)
Proving that G; C Z;(G).
Now for ¢ = m, we have

G=G, C Z,G)
giving that Z,,(G) = G.

which shows that G is nilpotent, completing the proof of the theorem.

5.4.4 Corollary.
Every nilpotent group is solvable.

Proof.

Let G be a nilpotent group of class m so that Z,,(G) = G.

By the above theorem 7.6.3, G has a normal series.
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{e} = Zy(G) C Z1(G) C Z2(G) C ... C Zn(G) = G.

where 214G — Z(Zifcl'v(g)), 1<e<m.

Zi1(G)
Since the center is always abelian, all the factors of the above normal series
are abelian. Thus G has a normal series with abelian factors.
Hence G is abelian.
5.4.5 Remark.
The converse of the above result is not true. That is every solvable group is
not nilpotent.
As an example we have the following
Consider S5, the symmetric group on 3 symbols.
We know that Z(S3) = {e} that is Z;(S3) = {e}
Also 2038 = 7( 5855 ) = 2 (&) = 2(85) = {e).
which imply Z5(S3) = {e} # Ss.

Continuing in the same manner Z,,(Ss) # S3 for no positive integer m.
Therefore S3 is not nilpotent.

5.4.6 Remark.

We observe the following

cyclic groups C abelian groups C nilpotent groups C solvable groups C all
groups.

Note that all the above containments are proper.

5.4.7 Theorem

Let G be a nilpotent group. Then

(i) Every subgroup of G is nilpotent.

(ii) Every homomorphic image of G is also nilpotent.

Proof.
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Let G be a nilpotent group of class m, that is m is the least positive integer
such that Z,,(G) = G.

(i) Let H be a subgroup of G.

We now show that Z,,,(H) = H.

Recall that Z,(G) = {33 € GJayalyt € Z,1(G) Vy e G}.

For every x € H N Z,G we have xg = gz for all ¢ € G. From which we get
xh = hz for all h € H which imply = € Z,(H).

Proving that H N Z,(G) C Z,(H). (1)

Again for any © € H N Zy(G) and for all y € H we have x € H and y € H
and = € Zy(G).

Now zyz~'y~™' € H and zyx~ly~! € Z,(G).

Thus zyz 'y~ € HN Z,(G).

Hence zyz 'y~ € Z,(H) for all y € H.

Therefore z € Zy(H).

Proving that H N Z5(G) C Zy(H). (2)

Continuing in the same manner, we get
HNZ(G) C Zi(H),1<i<m.

Now H=HNG=HNZ,(G) C Z,(H).
Hence proving that Z,,,(H) = H since Z,,(H) C H.
which shows that H is nilpotent.
(ii) Now let ¢ : G — K be a surjective homomorphism. That is let K = ¢(G)
be the homomorphic image of G under ¢.
Let x € Z(G). Then zyx~ty~! = e forall y € G.
As ¢(z) € ¢(Z1(G)) we have ¢(xyz'y™!) = ¢(e) for all ¢(y) € K.
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That is ¢(2)(y)d(z) ' o(y) " =€, oly) € K
which proves ¢(x) € Z1(K) since ¢ is surjective.
Thus showing that ¢(Z1(G)) C Z1(K).
Also for any = € Zo(G), we have zyz~'y~! € Z1(G) for all y € G.
Thus ¢(2)6(y)6(z)"'6(y) ™ € G(Z4(G)) for all §(y) € K.
which implies ¢(z) € Zy(K) since ¢(Z1(G)) C Z;(K) proving that ¢(Z2(G)) C
Zy(K).
Repeating the same argument, we obtain
o(Z;i(Q)) C Z;(K), 1<i<m.
Now K = ¢(G) = ¢(Z,,(G)) C Zp(K).
Hence Z,,(K) = K since Z,,(K) C K.
Proving that K = ¢(G) is nilpotent.
Thus every homomorphic image of a nilpotent group is nilpotent.
Hence the theorem.
5.4.8 Theorem:
Let H and K are nilpotent groups then H x K is nilpotent.
Proof.
Let H and K be nilpotent groups of class m and n respectively, that is m
and n are the least positive integers such that Z,,(H) = H and Z,(K) = K.
Without loss of generality, we may assume that m < n. Therefore we have

Z.(H) = H and Z,(K) = K.

85



Now,

ZHxK) = {(hk) € HxK/(hk)(z,y) = (,y)(h,k)V(x,y)eHxK.}.

Il
Vot Wanden WardanN

(
(h.k) € H x K /hx = xh and ky = yk VeryeK}
(h, k;)eHxK/heZG),keZ(K).}.

(

= Z(H) x Z(K).

Proving that Z,(H x K) = Z,(H) x Z,(K).
Also

Zo(H x K) = {(h.k) € H x K [(h, k)@, y)(h, k)" (w,9) ™" € Zy(H x K) ¥(w,y) € H x K }.
{( k) € H x K /(hah™'a~" kyk~"y ™) € Zy(H) x Z,(K) Vo € H,y € K}.
- {( k)€ H x K /hah™'z™" € Z,(H )Verkykl_leZl(K)VyeK}.

{( )EHXK/hEZQ(H),k:EZQ(K)}.

= Zy(H) x Zs(K).

Continuing in the same manner, we get

Zi(Hx K)=Z;(H) x Z;(K), 1<i<n.

Hence Z,(H x K) = Z,(H) x Z,(K) = H x K.

Proving that H x K is nilpotent.

5.4.9 Corollary.

Let Hy, Hs, ... H, be any n nilpotent groups. Then H; x Hy x ... X H, is
also nilpotent.

Proof.

Given that Hy, H,, ... H, are nilpotent groups.
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We now prove that H; x Hy x ... X H, is nilpotent by induction on n.

For n = 2, the result follows from the theorem 7.4.8

Now suppose that the theorem is true when the number of groups is less than
n.

Therefore, H = H; x Hy X ... X H,_1 is nilpotent.

Now H x H, is nilpotent by the theorem 7.4.8 which proves that

Hx H,=H, x Hyx...x H,_1 X H, is nilpotent.

Hence the theorem.

5.4.10 Example.

Give an example of a group G such that G has a normal subgroup N with
both N and % are nilpotent but G is not nilpotent.

Sol.

We have S5, the symmetric group on three symbols

That is S5 = {e,a,a? b,ab,a?b} with the defining relations a® = e = b?,
ba = a>b.

Let N = [a] = {e, a,a®}

Clearly N < S5 and 53 ~ —Z-

Further observe that IV, % are nilpotent but S5 is not nilpotent.
5.5 Summary

In section 5.3 we have defined n'® center of a group G. In section 5.4
the notion of nilpotent group introduced. At the end of section, we have
proved the direct product of finite number of nilpotent groups is nilpotent.
5.6 Model Examination Questions
(1) Find the upper central series of A4 and S;.

(2) Show that D, is nilpotent of class 2.
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(3) Show that S, is not nilpotent for n > 3.

(4) Show that if % is nilpotent then G is nilpotent.

5.7 Glossary

Upper cental series of a group, Nilpotent group, Class of nilpotency.
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UNIT-11
LESSON-06

DIRECT PRODUCTS

6.1 Introduction
In this lesson the internal direct product (sum) of a finite number of sub-
groups of a group is introduced through a set of necessary and sufficient
conditions. If a group G is isomorphic to the direct product of finite number
of subgroups whose structures are known the structure of G can be generally
determined.
6.2 Direct Product of Groups
6.2.1 Definition : Let G1,Gs, ..., G, be groups then the cartesian prod-
uct G; x Gy X ... x G, is a group under the point wise binary opera-
tion (g1, 92, -, 9u)(G1: G2 - - > Gn) = (9191, 929, - - - - gngy,) Where g;, g; € Gy,
1 < i < n. If ¢ is the identity of G; then (e, eq,...,e,) is the identity of
Gi X Gy x...xG,and (g7, 95", ...,97%) is the inverse of (g1, 92, - -, gn)-
This group is called the external direct product of groups Gy, Gs, ..., G,.
6.2.2 Theorem : Let Hy, H,,..., H, be a family of subgroups of a group
G and let H = H{H, ... H,. Then the following are equivalent.
(i) Hy x Hy X ... x H, = H under the cononical mapping that sends
(x1, T, ..., T,) tO T1T2 ... Ty,
(ii) H; > H and every element x € H can be uniquely expressed as z =
T1Zo...T, Where z; € H;, 1 <1 < n.
(iii) H; > H and if xyxs...2, = e then z; = e for each 1.
(iv) Hi>H and H;N(H Hy...H; 1H; 1 ... H,) = (e), 1 <i<n.

Proof. (i) = (ii). Assume that (i) is true.
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We have Hy x Hy x ... x H, = H under the canonical map o defined by
o(xy,x9,...,Ty) = 122 ... T, where z; € H;, 1 <1 <n.

Let H; = {(e,...,hi,...,e)|h; € H;} then for each x = (zy,29,...,2,) €
H, x Hy x ... x H,, it is easy to see that xH,z~' = H,. This shows that
H;>H, x Hyx...x H,. Also o : H, — H; defined by o((e, ..., hs,...,e)) =
e...hj...e = h; VY h; € H;. Clearly o is bijective and is a homomor-
phism. Hence H, v H;. Now H, v« H;, H, > H, x Hy x ... x H, and
Hy x Hyx...x H, = H= H;> H. Suppose x € H has two represen-
tations © = x10y...2, = 2,7,...7, where x;,2; € Hy(1 < i < n) then
o(T1, 29, ..., ) = 0(X), Ty, ..., 1) = T1Ty. .. Ty = T1Ty...7, (0is 1 —1)
= r; = x; for © = 1,2,...,n. Therefore each element x € H is uniquely
written as ¢ = x5 ... x,, v; € H; 1 <@ < n.

(1) = (i4i). Assume that (ii) is true.

Let z129...2, =e=cee...e = x; = ¢,1 < i < n. (by unique representation)
(73i) = (iv). Assume that (iii) is true.

We first prove that H; N H; = {e}, i # j. f x; € H; N H; then e = rw;t €
H;H;. By (iii) 22, = e = 2, = e = a;'. Thus H; N H; = {e}, i # j.
Let z € H;,y € H;,i # j. Since H;, H; are normal subgroups of H then
ryr~' € H; and yry~' € H;. Further zyz~'y~! € H; and zyz~'y~' € H;,
therefore zyz~'y™' = e, since H;NH; = {e}, i # j = zy = yx V x €
H;,y € Hj. Let x; = 21...2;_1%i41...%y,, Where z; € H;,1 < ¢ < n this
implies that e = x;lxl e X 1T - Ty = X1To .. .$i_1$;1xi+1 ...T, by the
commutation of the elements of H; and H;, i # j. By (iii) we get z; = e,
1<i<n. Thus ;N (Hy...H; 1Hiyq1...Hy) ={e}, 1 <i<n

(iv) = (7). Assume that (iv) is true.
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We first note that oy =yxr Vo € H;,y € H;,1 # j.
Define amap o : Hy X Hy X ... x H,, — H by o(x1,%a,...,Ty) = 122 ... Tp.

Clearly the map o is surjective.

o is homomorphism: For all (x1,2s,...,z,) and (y1,¥y2,...,Yn) € Hy X
Hyx...xHy then we have o(z1, 29, ...,2,) = 122... Ty and o (Y1, Y2, . . ., Yn) =
YiY2 .- - Yn

0((3717$27~--7$n)<ylay27~-,yn)) = U($1y17$2y27--~;5€nyn)
= T1Y1X2Y2 ... TpYn

= I1Ty...TuY1Y2 - - - Yo(by the commutation)

= O-(xlvx% cee 7$n)0-<y17 Y2, ... ,yn)
Thus o is a homomorphism. Now
keroc = {(xl,xQ,...,anU(mth, ”xﬂ) :e}
= {(x1,29,...,2,)|x 120 ... 2, = €}
= {(z1,29,...,30) |7 =220 @By . T, 1 < i <}
= {(xlax27"'7xn)|x1_6 1</L<n} by (IV)
= {<€767 76)}

o is injective. Therefore Hy x Hy X ... x H, ~ H.

6.3 Internal Direct Product

6.3.1 Definition : Let Hq, Ho,..., H, be subgroups of a group GG and let
H = HH, ... H, then we say that H is the internal direct product of H;,

1 <7 < nif the subgroup H; satisfy any one of the statement of the theorem
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(8.2.2).

It may be noted that the external direct product H; x Hy X ... X H,
always exists, where as the internal direct product of H;, 1 < ¢ < n exists
if and only if the canonical map Hy X Hy X ... x H, — H{Hy...H, is an
isomorphism.

The emphasis of the words internal and external may be dropped if the
subgroups H;, 1 < i < n satisfy any one of the condition of theorem (6.2.2).
6.3.2 Direct Sum : If G is an additive group and H; (1 < i < n) are
subgroups of G then the (internal) direct product of subgroups H; of G is
called the direct sum of H; and is also written as Hi ® H, @ ... ® H,,.
6.3.3 Example : If each non identical element of a finite group G is of
order 2 then |G| = 2" and G = C} x Cy X ... x Cp, where each C; (1 <i <n)
is cyclic group of order 2.

Solution. Given that G is a finite group and each element x € G, x # e is
of order 2. Therefore x = 27! V z € G. For all a,b € G we have ab € G
and ab = (ab)™' = b7la™! = ba. Hence G is abelian. Let a; € G, a; # e and
Cy = [a1]. If G = C] then the result is true. Otherwise there exist an element
as € G, ay ¢ Cy. Let Cy = [as], consider the product C1Cy, clearly C1C5 is a
subgroup of G (since G is abelian), C;NCy = {e} and |C,Cy| = |C}||Cs| = 22
Further C; and Cy are normal in C;Cy. On using theorem (8.3)(iv) we get
C1Cy = (1 x C5. Thus the product is the direct product. If G = C1Cy
then |G| = 22 and G = C; x Cy. Thus, the result follows. Otherwise C;Ch
is a proper subgroup of GG. This process continues and ultimately, we get
G = C1Cy...C, where C; = [a;],1 <i < n. Observe that each C; is normal
in G (since G is abelian) and C;N(C1Cy ... C;_1Cipq ... Cy) = {e}, 1 <i < n.
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By the theorem (8.2.2)(iv) we get C1Cy...C,, = Cy x Cy X ... x C,. Hence
the result.
6.3.4 Example : A group G of order 4 is either cyclic group or G = C x Cy
a direct product of two cyclic groups C;,i = 1,2 each of order 2.
Solution. Given |G| = 4 then by Lagranges theorem the order of every
element a(a # e) of G divides 4 = O(a) = 4 or 2. In the case of O(a) = 4
we get G = [a] a cyclic group. If O(a) = 2, so every non identity element of
G is of order 2. Let Cy = [a] and Cy = [b], where b ¢ C. Hence G = Cy x (s
by the above Example (8.3.3).
6.3.5 Note : Every group of order 4 is either cyclic group or isomorphic
to klein’s four group.
6.3.6 Example : Let G be a finite group of order pq, where p, q are
district primes and if G has a normal subgroup H of order p and a normal
subgroup K of order ¢ then G is cyclic.
Solution. Given |G| = pq, where p and ¢ are distinct primes. H>G, K > G
and |H| = p, |K| = q. By Lagrange’s theorem |H N K| divides both |H|
and |K|. Since p and ¢ are distinct primes we get |H N K| = 1.Therefore
HNK = {e}.

Let h € H,k € K and H, K are normal in G we get hkh='k=' € H N
K = hk = kh (HN K = {e}). Thus HK is a subgroup of G. Further
|HEK| = YWIEL _ 0 — |G|. Thus G = HK. Clearly H > HK, K > HK and

HNEK|
HK < H x K by 8.3(iv). Since p, q are primes then H and K are cyclic. Let
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H = [h], K = [k] then

(hk)P? = (hk)(hk)...(hk) (pq times )
= (hh...h)(kk...k)
—  pPgpa
= (hP)1(k)P

= ¢ =G=<hk>

G is generated by hk. Thus G is cyclic and G = H x K. Hence the result.
6.3.7 Example : If G is cyclic group of order mn, where (m,n) = 1 then
G ~ H x K, where H and K are subgroup of G orders m and n respectively.
Solution. G is a cyclic group of order mn and (m,n) = 1. Since m and n
divides |G| and G is cyclic group there exist unique subgroups H and K of
G order m and n respectively. (If G is a finite cyclic group of order n and
d is a positive divisor of n then G has a unique subgroup of order d). By
Lagrange theorem |H N K| divides both |H| and |K|, so |H N K| = 1 since
(m,n) = 1. Therefore H N K = {e} and |[HK| = % = mn = |G|, thus
G = HK. Since G is cyclic group then H and K are normal in G = HK
and using theorem (8.3) we get HK ~ H x K. Hence G ~ H x K.

6.3.8 Example : If G is a finite cyclic group of order n = p{'p5* ... pi*,
where p;’s are distinct primes 1 < ¢ < k. Then G ~ H; x Hy X ... X Hy,
where H; is a cyclic group order p;, 1 <1 < k.

Solution. Given that G is a finite cyclic group and |G| = n = p{'ps? ... p*,
where p;’s are distinct primes and e;’s are natural numbers 1 < i < k. We

shall prove the result by induction on n, the order G. Assume that the result
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is true for all groups whose order is less than n. We have |G| = n = mp*,

€k

where m = p{'p5?...p,"7". Now (m,p*) = 1 and using Example (8.10) we

get G ~ H x Hy, where H and Hj are cyclic subgroups of G of orders
m and p;* respectively. Since |H| = m < n, by induction of hypothe-
sis H ~ Hy x Hy x ... x Hp_y, where H; is a cyclic group of order p;’,
1<i<k—1. Thus G~ H x Hj,. Hence G ~ H; x Hy X ... X Hj_{ x H},.
6.3.9 Example : Show that the group (Z/(4),+) cannot be written as
the direct sum of two non-trivial subgroups.

Solution. Assume that Z/(4) is the direct sum of two non-trivial subgroups
H and K then each of H and K must be of order 2 and H N K ={0}. Since
Z/(4) has a unique subgroup {0, 2} of order 2 then H = K = {0,2}. This is
not possible since H & K = H # Z/(4). Hence (Z/(4),+) cannot be written
as a direct sum of two non-trivial subgroups.

6.3.10 Example: Show that the group Z/(10) is a direct sum of H = {0,5}
and K = {0,2,4,6,8}.

Solution. We known that the group Z/(10) is abelian. Note that H =
5], K = [2].

H and K are normal of Z/(10) and H N K = {0}. Further H & K =
{0,2,4,6,8,5,7,9,1,3} = Z/(10). Therefore Z/(10) is the (internal) direct
sum of H and K.

6.4 Summary

In this lesson we have introduced the notion of direction product of a finite
number of subgroups of a group. Also we have defined internal direct prod-

uct and direct sum. At the end of this section we given examples.

6.5 Model Examination Questions
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(1) Show that the group Z/(8) cannot be written as the direct sum of two

nontrivial subgroups.

(2) Let N<G = H x K. Prove that either N is a abelian or N intersects
one of the subgroups H x {e}, {e} x K nontrivially.
6.6 Glossary

Direct product, internal direct product, direct sum
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LESSON-07

FINITELY GENERATED ABELIAN
GROUPS AND THE INVARIANT OF A
FINITE ABELIAN GROUP

7.1 Introduction : In this lesson we study that any finitely generated
abelian group can be decomposed as a finite direct sum of cyclic groups. This
decomposition, when applied to finite abelian groups, enables us to find the
number of nonisomorphic abelian groups of a given order.

Let G be a group and S be a subset of G. Let ¢4 be the family of sub-
groups of G containing S. let M = NA, where the intersection is taken over
all subgroups A of ¢. Clearly M is the smallest subgroup of G containing S
or M is called the subgroup of G generated by S and we write M = [S]. If
S is empty then M = {e}.

If S is a nonempty subset of G then M = [S], the subgroup generated
by S, is the set of finite product x x5 ...z, such that for each i, z; € S or

ni ,.n2

x;t € S. In other words every m € M is a finite product m = LR A

™
where z;,’s are elements of S and are not necessarily distinct and n;’s are
integers.

If G = [9] for some nonempty subset S of G then S is called a set of
generators of G. If S is finite and G = [S] then G is said to be finitely gen-
erated group i.e., a group G is said to be finitely generated if it is generated
by a finite subset of G.

The following may be noted
(i) Every cyclic group is finitely generated.

(ii) Every finite group is finitely generated and the converse is not true.

For example (Z, +) is finitely generated but is not finite
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(iii) All groups are not finitely generated. For example (Q, +).

7.2 Fundamental theorem of finitely generated abelian groups
7.2.1 Theorem : Let A be a finitely generated abelian group then A can be
decomposed as a direct sum of a finite number of cyclic groups C;. Precisely
A=C®Cyd...d Cy such that either C,Cs, ..., Cy are all infinite or
for some j < k, C1,Cy,...,C; are of order my, mo, ..., m; respectively with
my|ms|...|m; and Cjiq, ..., C) are infinite.

Proof. Given that A is finitely generated abelian group i.e., A is generated
by a finite number of elements of A.

Let k£ be the smallest number such that A is generated by a set of k
elements. The theorem is proved by induction on k.

If kK =1 then A is generated by a single element i.e., A is cyclic group
and the theorem follows trivially.

Let k£ > 1, and we assume that the theorem is valid for every group gen-
erated by a set of £ — 1 elements. Then we have the following possibilities.
(i) A has a generating set S = {aq, as, ..., a;} with the property that for all
a1, o, ..., qp € Z such that the equation i aa;=0=a;=0(1<i<k).
(ii) A has no generating set of k elementszv:v}th the property stated in (i).
Case(i) In this case none of the elements of S is the additive identity. It is
easy to see that every subset of S has the property stated in (i). Let C; = [a]
be the cyclic subgroup generated by a;, 1 < i < k. Clearly aya; = 0= a; =0
hence C; is an infinite cyclic group and C; > A. Every element a € A has a

k

unique representation of the form a = > a;a; where a; € Z.
=1

Ifa= Z oa; = Z B;a; then Z((JzZ Bi)a; = 0 and this implies a; = f;,
1<i<k. On using theorem (8. 3) weget A=C1 DD ... 0 C) ie., Ais
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the direct sum of finite numbers of infinite cyclic subgroups. This proves a
part of the theorem.
Case(ii) In this case given any generating set {p1,pa, ..., pr} of A there ex-
ists integers aq, ao, ..., ay not all of them zero such that Zk: a;p; = 0. Since
Yo aipi = > (—a;)p; = 0, we may assume that o; > 0 for slo:rile 1.

Now consider all possible generating sets of A with k elements and let
X be the set of all k- tuples (g, s, ..., ax) of integers such that i a;q; =0,
a; > 0 for some i, some generating set {qi,qo,...,qx} of A. Letzzzéll be the
least positive integer that occurs as a component in a k-tuple in X. Without
loss of generality we may take m; to be the first component, so that for some
generating set S = {ay,as,...,ar} we have myja; + asas + ... + agar = 0.
By division algorithm we can write a; = ¢;mq +1r;, 0 <7r; <my, 2<1<k

putting a’s in the above we get
miby +1r9a9 + ...+ rpar =0 (7.2.1(a))

where by = a1+qas+. . .+qrar = 0, here by # 0. If by = 0thena; = — zk: q;a;
and this implies that A is generated by k—1 elements which is a contra(zi:iztion
to the maximality of k. Further by = a; — i gia; = S = {by,as,...,a,}
is a generating set of A. From the equatioan%.Z.l(a)) and by the minimal
property of m; we get ro =r3 = ... =1, = 0. Thus we get m1b; = 0. Let
Cy = [b1]. Now (1 is a cyclic subgroup of A of order myq, since m; is the least
positive integer such that mb; = 0 and C > A.

Let A; be the subgroup generated by {as,as,...,a;}. Clearly A; > A
and A = C} @ A;. By theorem (6.2.2)(iv), it is sufficient to prove that

Cy N A; = {0}. An element of ] is of the form ayby, a1 € Z, 0 < oy < my.
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Suppose a1b; € A; then a1by = asas + ... + agag, where o € Z, 2 <
1 < k. Therefore a1b7 — asas... — agap = 0 = «; = 0 by the minimal
property of m;. Thus A = C1 @ A;. Now A; cannot be generated by less than
k — 1 elements, for otherwise A would be generated by less than k elements
which is a contradiction to minimality of k. By induction of hypothesis
A=C,dC3d ... D Cy, where C;, 2 < i < k are all cyclic groups which are
all infinite or for some j < k, Cy, (s, ..., C; are finite cyclic groups of orders
Mg, Mg, . .., m; respectively with ma|mg|...|m; and the remaining C;, i > j
are infinite .

Let C; = [b;], 2 < i < k. Suppose that the order of Cy is my then

{b1,bs,...,b;} is a generating set of A and

since m, is the least positive integer that occurs as a component in any k-
tuple in X, by division algorithm ms = mygs + 12, 0 < ry < my. From

equation (7.2.1(b)) we get

where di = by + @abo, here d; # 0. If d; = 0 then C; = Cy which is a con-
tradiction. Further {dy,bs,...,b;} is a generating set of A. By the minimal
property of m; and from equation (7.2.1(c)) we get ro = 0. Thus my = miq;
and mq|ms. Hence the theorem.

7.2.2 Note : If A is a finite abelian group then C7, (s, ..., Cy are all finite.

In this section A denote a finite abelian group written additively.
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7.2.3 Theorem : Let A be a finite abelian group then there exists a unique
finite list of integer my, ma,...,my (all > 1) such that |A| = mymgy...my
and mq|ms|.../my and A = C; ® Cy @ ... & Ck, where C,Cy, ..., Cy
are cyclic group of A of order my, ma,...,my respectively. Consequently
A7y @2, ®... 0 Zpy,.

Proof. Given that A is a finite abelian group and hence A is finitely gen-
erated. By theorem (7.2.1) A is decomposed as an (internal) direct sum of
a finite number of finite cyclic subgroups C;, 1 < i < k with |C;| = m; and
mi|msl|...|mg. We have A = C; & Cy @ ... @ C) and by the definition of

internal direct sum.

ClEBCQ@...EBCkﬁclXCQX...XCk

Therefore |A| = |Cy]|Cs| ... |Ck| = mimsg...my. Further it is known that

every cyclic group of order m is isomorphic to Z,,. Hence

A=0C100C8..08C,~22y, 2y, ... 0 2y,

We now prove the uniqueness of the list mq, mo, ..., ms.

Suppose A = C1&Cy®...6Cy, ~ D1&Dy®...&D; where C;, 1 < i <k, D;,
1 < j <lare all cyclic groups with |C;| = m;, mi|mo|...|my and |D;| = nj,
ny|ngl| ... |ny. Clearly every element of A is of order < my and D; has an
element of order n;, from this we get n; < m;. Reversing the argument we

get my < ng. Thus my = n;. Now my_1A = {my_1ala € A} from the above
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two decompositions of A, we get

my—1A =(my_1C1) & ... & (my—1Cx_1) B (my—1Cy)
=(mp_1D1) ® ... & (Mg—1D1—1) & (my_1D))
= |my_1 A| =my_1Cy| .. my—1Crza] |1 G

:|mk_1D1| Ce |mk_1Dl_1| |mk_1Dl| (723(&))

we have mi‘mkfla 1<i<k-—1= myp_1C; = {0} and hence |m;_1C;| =1,

1 <i <k —1. From the equation (7.2.3(a)) we get

|mk—1A’ = |mk—le| = |mk—1D1| e |mk—1Dl—1| |mk—1Dl|
since my, = ny, note that |my_1Cx| = |my_1D;| and it follows that
1 = |my_1D1| |mg_1Ds] ... |my_1D;_4|

Hence |my_1D;| =1, 1 <j <I[—1. Thisimplies in particular that my_;D;_,
is trivial and my_; is a multiple of n;_; that is nj_1/m,_, -

By similar argument we get my_1/,,_, Thus my_y = n;_;. Continuing in
this way, using the fact mymsy...my = |A| = ning...n;, we get k = [ and

m; = n;, 1 <1 < k. Hence the theorem.

7.3 THE INVARIANT OF A FINITE ABELIAN GROUP
7.3.1 Definition : Let A be a finite abelian group. f A~ Z,, & 7,,,®...®
Zm, where 1 < mq|mg|...|my then A is said to be of type (mq,ma, ..., my)

and the integers my, msy, ..., my are called invariants of A.
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7.3.2 Remark : Two finite abelian groups are isomorphic iff they are of the

same type.

7.3.3 Definition : A partition of a positive integer k is an r-tuple (kq, ko, . . . , k;.)

of positive integers such that k = k1 +ko+.. . +k.and k; < k1, 1 <@ <r—1.
The set of partitions of k is denoted by P(k).

7.3.4 Lemma : Let I’ be the family of non-isomorphic abelian group of
order p®, where p is a prime then there is a one-one correspondence between
F and the set P(e) of partitions of e .

proof. Let A € F. By theorem (9.4) we have A ~ Z,,, & Z,,, & ... D Zp,,

where 1 < mq|mg|...|my and determine a unique type (my,ma,...,my).
Now |A| = p® = myms...my and 1 < my|mal...|my then m; = p® my =
P2, ... my = p%* with ey < ey < ... <epand e; +e3+ ...+ e, =e. Thus
every A € F determines a partition (e, ey, ..., ex) of e.

Define a map o : I — P(e) by 0(A) = (e1,ea,...,¢e). If B € F and
B # A then A and B are not isomorphic then they determine different par-
titions of e, i.e., 0(A) # o(B). Thus shows that ¢ is injective.
For every (e, ea,...,es) € P(e) we have the abelian group

G =Ty @ Zyper @ ...® Zpes € F

such that 0(G) = (ey, ea, ..., es). This shows that o is surjective. Thus there
is a one-one correspondence between F' and P(e). Hence the lemma.
7.3.5 Lemma : Let A be a finite abelian group of order pi'p5 . .. pi*, where
pi (1 <i < k) are distinct primes and e; > 0 then A = S(p;) ® S(p2) D ... D
S(pr), where |S(p;)| = p;*. This decomposition is unique,
ile,if A=H & Hy® ... Hy where |H;| = pj" then H; = S(pi), 1 <i <k.
Proof. We have A is a finite abelian group and |A| = p{'p5*...p*, where
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p;s are distinct primes and e; > 0 (1 < ¢ < k) . On using theorem (9.4) we
get A=A © A ® ... D A, where A; (1 <i < n) are cyclic subgroups of A
with the property 1 < |A;|/|As|/ ... /] Axl.

Let |A;| = pivps? ...pi* where e;; > 0, 1 < j < k, since A; is

cyclic group and A; contains unique subgroups Aj;, As;, ..., Ag; of orders
piv, P, ..., pit respectively. Using the fact p;s are distinct and by La-

granges theorem we get
A N(A @ . B A1) DAy © ... B Ay) = {0}

for all j =1,2,..., k. Further Aj;; > A;, 1 <j <k and we have
A=A, DAy @ ... Ay Therefore

A:[AHEBAgl@@Akl]@[Alg@AQQEB@Akg]@@[Aln@AQn@@Akn]
=>A=[A110A®.. DAL DA PAn ... DAy D... D[An D A ® ... D Akl

=S(p1) & S(p2) & ... 0 S(pp)

ej1teje..tejn

; = p;j . This proves the first part of the theorem.

Suppose A = H, & Hy & ... ® Hy where |H;| = P, 1 <1i <k. Clearly
each of the subgroups S(F;) and H; is the subgroup containing all those ele-
ments of A whose orders are power of p;. Hence H; = S(F;), 1 <i < k. This
prove the uniqueness of the decomposition of A. Hence the theorem.

7.3.6 Theorem : Let n = 'ﬁ1 pjj, where p; are distinct primes then the

J
k

number of non-isomorphic abelian groups of order n is given by [[ |P(e;)].
j=1
Proof. Let A, be the family of non isomorphic abelian groups of order n.
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Let A € A,, and by lemma 10.6, we have A = S(p1) ® S(p2) & ... B S(pk),
where |S(p,)| = pjj, 1 < j < k. By lemma 10.5, the number of non isomor-
phic abelian groups S(p;) is |P(e;)]|.

Therefore the number of non isomorphic abelian groups of order n is given

k
by |P(e1)| |P(e2)|...|P(en)|. Thus |A,| = [[ |P(e;)|- Hence the theorem.

J=1
7.3.7 Example : Find the non-isomorphic abelian groups of orders p, p?

and p?, where p is prime number.
Solution. If n = p®, where p is prime number then by lemma (10.6), the
number of non-isomorphic abelian group of order n is |P(e)|, where P(e) is

the set of partitions of e. The following may be noted

P1) ={(1)} and [P(1)]=1
P2) ={(1,1),(2)} and [P(2)] =2

e
—~
w
~—
|

{(1,1,1),(1,2),(3)} and [P(3)[=3

(i) The number of non-isomorphic abelian groups of order p is |P(1)| = 1.
Therefore there is only one abelian group of order p of type (p) and it is
given by Z,. We know that every group of prime order is cyclic and abelian.
Hence there is only one group of order p (up to isomorphism) given by Z,,.
(i) The number of non-isomorphic abelian group of order p? is |P(2)| = 2.
Hence there are only two non-isomorphic abelian groups of order p?. They
are of type (p,p) and (p?) given by Z, & Z, and Z,2 respectively.

(iii) The number of non isomorphic abelian groups of order p* is |P(3)| = 3.
Hence there are only three non-isomorphic abelian groups of order p®. They
are of type (p,p,p), (p,p?), (p*) given by Z, ® Z, ® Z,, Z, ® Z,» and Z,s

respectively.
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7.3.8 Example : Find the non-isomorphic abelian groups of order 360.
Solution. We have n = 360 = 23.32.5!

where e1 =3, ea =2, e3=1 p; =2, po =3, p3 =1 and

[P(3)] =3, [P(2)] =2, |[PQ)| =1

The number of non-isomorphic abelian groups of order 360 is

HIP(ej)\ =P [PE)] [P(1)]

=3x2x1

=6
They are of the types: (2,2,2,,3,3,5) , (2,2,2,9,5),(2,4,3,3,5) ,

(2,4,9,5), (8,3,3,5), (8,9,5)

The above six types determine the following 6 non isomorphic abelian groups

LoB Lo ® LoD s B LB Ls
Zy® Zo® Zo D Zy D Zs
Zo® Zy® Z3® Z3 D Zs

Zo® Zy® Zy ® Zs
73 @ L3 @ Zs D Zs
Z3 @ Zyg ® Zs

7.4 Summary

In this lesson we have defined any finitely generated abelian group can be
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decomposed as a finite direct sum of cyclic groups and also we have defined
the number of non isomorphic abelian groups of a given order

7.5 Model Examination Questions

(1) State and prove fundamental theorem of finitely generated abelian groups.
(2) Let A be a finite abelian group then there exists a unique finite list of inte-
ger my, ma, ..., my (all > 1) such that |A| = myma ... my and my|ms| ... |my
and A=C®dCyP...dCk, where C1,Cy, ...,y are cyclic group of A of
order my,mag, ..., my respectively. Consequently A ~ Z,,, ®Z,,,®...® Z,,.
(3) Let F' be the family of non-isomorphic abelian group of order p°, where
p is a prime then there is a one-one correspondence between F' and the set

P(e) of partitions of e .

k
(4) Let n =[] p;j, where p; are distinct primes then the number of non-
j=1
k
isomorphic abelian groups of order n is given by [[ |P(e;)].
j=1

(5) Find the non-isomorphic abelian groups of order 2020.
7.6 Glossary
Finitely generated abelian group, finite direct sum cyclic groups, Invariants,

partition of a integer, partion set, invariants of a finitely generated abelian

group.
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LESSON-8

CAUCHY’S THEOREM FOR ABELIAN
GROUP AND SYLOW THEOREMS

8.1 Introduction : The decomposition of a finite abelian group A as
a direct sum of finite number of cyclic groups gives a complete description
of the structure A. The sylow’s theorems yields a powerful set of tools for
studying the structure and the classification of finite groups. we study the
existence or non existence of simple group of a given order.Moreover we anal-
yse the groups of order p* and pgq, where p ¢ are prime numbers.
8.2 Cauchy’s theorem for abelian group and first sylow theorem
8.2.1 Definition : p-group Let p be a prime number. A group G is said
to be a p-group if the order of every element of G is a power of p.
8.2.2 Example : (i) Z, is a 2-group.
(ii) Zy x Zy is a 2-group.
(iii) Zo7 is a 3-group.
8.2.3 Definition : p-subgroup A subgroup H of a group G is said to be
a p-subgroup of G if the order of every element of H is a power of p, where
p is a prime number.
8.2.4 Definition : Sylow p-subgroup Let GG be a group and p be a prime
number. Let p™ /|G| and p™*! ¢ |G| (i.e., p™™! does not divides |G|) where
m € N then any subgroup of order p™ of G is called a Sylow p-subgroup of
G (i.e., a maximal p-subgroup of a group G is a Sylow p—subgroup of G).
8.2.5 Lemma : (Cauchy’s theorem for abelian group) Let A be a
finite abelian group and p be a prime number. If p/|A| (i.e., p divides |A] )
then A has an element of order p.

Proof. Let A be a finite abelian group. Let |A| = n. Let p/|A|, where p is
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prime number.
Case(i) If |A| = p then A is cyclic group of order p. Let A =< a >, where
a € A = O(a) = p = there exists an element a € A of order p.

Case (ii) Let A be any cyclic group then p/|A| = |A| = pk for some k. Let
a € Athen dd =e = a?* =c = (d")? =e = O(d*) = p.

We shall prove the theorem by induction on |A| = n. Let us assume that
the theorem is true for all groups whose order is less than |A|.

Consider B =< a* >, the cyclic group generated by a* of order p then
|B| = p where p < n. Therefore we have p/|B| and p < n then by induction
B has an element of order p. Since B < A then A has an element of order p.
Case (iii) Let A is not cyclic group. Suppose there exist b # e in A such that
A #< b > a cyclic group generated by b (Sinceb € A, A A< b>if A=<b>
then A is cyclic group. But given A is not cyclic therefore A #< b >).

If p/| < b > | then < b > has an element of order p by induction. But
<b> < A= Aisalso has an element of order p.
Suppose pt| < b > | then consider the quotient group then p/| =

_ _14]
But ’<b>| [<b>|

<b> <b> ’

< |A| then by induction b> has an element of order p.

<

Let a € % be an element of order p then @ = a < b > for some a € A.
Let O(a) = k then a* = e.

Now (@) =(a<b>)F = a<b>a<b>...a<b> (ktimes) =a* <b >
= e<b> = < b> which is the identity of - <b>

= p/k = p/| < a > |, where < a > is a cyclic subgroup of A generated
by a € A. Then by induction < a > has an element of order p = A has an

element of order p.

8.2.6 Theorem : (First Sylow theorem) Let G be a finite group and let
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p be a prime number. If p™ /|G| then G has a subgroup of order p™.

Proof. Let |G| = n. Given that p is a prime number and p™ /n.

We prove the theorem by induction on n. If n = 1 then the result is trivial.
Assume that the result is true for all groups of order less than n

i.e., If H is a finite group of order less than n and p*/|H| then H has a
subgroup of order p*.

Consider Z(G) the centre of G and we have the following two cases.
case(i) Suppose p/|Z(G)|, since Z(G) is abelian by Cauchy’s theorem for
abelian group (11.6) there exist an element say a € Z(G) of order p.

Now consider the cyclic group C' generated by a, i.e., C' =< a > where
a € Z(G) then C' > G.

Since C' =< a >= {d'|i = 1,2, ...,p}, consider for any g € G we have
ga'g~t = (gag~')(gag™")...(gag ") (i times)

=a' eC (a € Z(G) = ga = ag)

Consider the quotient group £, we have p™/|G| = |G| = p™k, for some k
and |C| =p (since |C|=la|] =p)

then [§| = & = £ = p~'k < |G| and also p™~'/|Z|

then by induction g has a subgroup say H of order p™!.

Then there exist a unique subgroup H of G such that H = %

= 17| = 141 = 14
> || = 11C] = = =

= (G has a subgroup of order p™.

Case(ii) Suppose p 1 |Z(G)|. We have the class equation of G
n=|G|=Z(G)|+ 2 .[G : N(a)]

where the summation runs over one element from each conjugate class having
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more than one element, we have p/|G| and p 1 |Z(G)|

= p1[G: N(a)l, for some a € G,a & Z(G)

If p/[G : N(a)] for every a then p/ > |G : N(a)]

= p/|G| and p/ T[G : N(a)]

= p/|Z(G)| which is a contradiction.

For the above a we have |G| = |N(a)|[G: N(a)] and p1[G: N(a)]

a ¢ Z(G) = |N(a)| = p™l for some [ < k. Therefore p™/|N(a)|.

Clearly |N(a)| < |G| = n. Hence by induction of hypothesis N(a) has a sub-
group H of order p™. Thus G has a subgroup H of order p™.

8.2.7 Corollary : (Cauchy’s theorem) Let G be a finite group and p is
prime. If p/|G| then G has an element of order p.

Proof. Let G be a finite group such that p/|G| then by first sylow theorem
G has a subgroup H of order p.

Since p is prime and |H| = p = H is cyclic.

= every non identity element of H is of order p. Therefore H has p — 1
elements of order p. But every element of H is an element of G then G has
at least p — 1 elements of order p. Hence the result.

8.2.8 Corollary : A finite group G is a p-group if and only if its order is
a power of p.

Proof. Suppose that the order of G is a power of p say p™. For any element
a € G, we have O(a)/|G| = O(a)/p™ = O(a) = p*, for some k < m.

Thus every element of G has order a power of p. Hence G is a p—group.
Conversely, suppose that G is a p-group i.e. every element of G has order
power of p.

Suppose |G| = p™ then there is nothing to prove.
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Suppose |G| = ¢, for some prime number ¢ # p then ¢/|G|. By Cauchy’s
theorem G has an element of order ¢(# p) which is a contradiction, since G
is a p-group. Therefore the order G is a power of p. Hence the result.
8.2.9 Definition : Let H be a subgroup of a group G then
N(H)={g € GlgHg ' = H} is called the normalizer of H in G.
8.2.10 Note: (i) N(H) <G
(i) H > N(H)
(iii) N(H) is the largest subgroup of G in which H is normal.
(iv) If K is a subgroup of N(H) then H > KH.
8.2.11 Lemma : Let H and K be subgroups of a group G and Cy(K) =
{hKh~'|h € H} the set of H-conjugates of K then |Cy(K)|=[H : N(K)NH].
Proof. Define a mapping f : Cy(K) — N(K) N H by
f(hKh™') = (N(K) N H)h. Clearly f is onto.
Now to prove f is one-one: f(hiKh;') = f(hoKhy')

= hi'h € N(K)NH

= h;'hy € N(K)

= h{'hoKhy'hy = K

= hKh{' = hoKhy"
Thus there is one-one correspondence between Cy(K') and the set of distinct
right cosets of N(K) N H in H. Therefore |Cy(K)| = [H : N(K) N H].
Hence the lemma.
8.2.12 Theorem : Let G be a finite group and let p be a prime number
then all Sylow p-subgroups of G are conjugate and their number n, divides
O(G) and satisfies n, = 1(mod p).
Proof. (i) Suppose that |G| = p™q, where p 1 ¢ then by first Sylow theorem
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G has a subgroup K of order p™, since p™/|G| and p™*! { |G|. Let K be a
Sylow p—subgroup of G and C'(K) be the family of G-conjugates to K
ie., C(K) = Cg(K) = {gyKg'lg € G}. By Lemma (8.2.11), we get
|IC(K)| = |Ce(K)| =[G : N(K)NG] =[G : N(K)], since N(K) is a
subgroup of G).

Given G is finite then |C(K)| = |G|/|IN(K)|. It may be seen that
p"/IN(K)].
Since N (K) is the largest subgroup of G in which K is normal and |K| = p™.

Therefore
pt (IGl/IN(K)|) = p1|C(K) (8.2.12(a))

Let H be any Sylow p-subgroup of GG. We shall show that H is conjugate to
K. Now the set C'(K) is an H-set by conjugation. For any L € C(K), let
Cu(L) ={hLh'|h € H} the orbit of L.
Now Cy(L) = {hgKg~'h'|g € G,h € H}

= Cy(L) C Ce(K) = C(K) and

C(K)= |J Cu(L) (apartition)) (8.2.12(b))
)

LeC(K

where the union runs over one element L from each conjugate class Cy (L)

(orbit). By Lemma (8.2.11), since H is a Sylow p-subgroup of order p™

ICy(L)| = [H: N(L)NH] =p°, ¢>0 (8.2.12(c))
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Claim P =1 H =L
If H =L then p° = [L: N(L)N L] = [L: L] = 1.
Conversely suppose that p° =1 = H = N(L)NH = H C N(L)
= HL = LH = HL is a subgroup of G.
Further H C N(L) = L> HL. (by Note (8.2.10) (iv))
HL ., _H

By second isomorphism theorem % ~ =

= Fl=gp =0 (f20).

If f>0then |[HL| > |L|=p™ and % this is not possible.
Therefore f = 0= HL =L = H C L = H = L, since |H|=|L| = p™.
Hence the claim

From the equations (8.2.12(b)) and (8.2.12(c)) we get

IC(E)| =D p° (8.2.12(d))

From the equation (8.2.12(a)), we have that p does not divide |C'(K)|. This
implies that there should be atleast one term p© is 1 in ) p©. This shows that
e = 0 atleast once in the summation. By our claim above H = L, where
L e C(K) ie., L is conjugate of K and hence H is conjugate to K. Thus
any two Sylow p-subgroups of GG are conjugate. This proves the second Sylow
theorem.

(ii) We have proved in (i) that any Sylow p-subgrop of G is conjugate to K.
Therefore n,, the number of Sylow p-subgroups of G is given by |C(K)| and

ny = |C(K)| = [G]/IN(K)| (8.2.12(c))
This shows that n, divides |G|.
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From the above claim, it is clear that there is only one term in > p¢ is 1.

Therefore from the equations (8.2.12(d)) and (8.2.12(e)) we get

np:Zpezl—i—Zpe:l—i—kp

e>0 e>0
= n, = 1(mod p)

This proves the third Sylow theorem. Hence the theorem.

8.3 Applications of Sylow theorems

8.3.1 Corollary : A Sylow p—subgroup of a finite group is unique if and
only if it is normal.

Proof. Let G be a finite group of order p™gq, where p is a prime number
and ptq. Let K be a Sylow p—subgroup of G then

K is unique & n, =1

& |C(K)|=1
&S gKgt=K V ged
& K G

Hence the result.
8.3.2 Example : If d is a divisor of n, the order of a finite abelian group
A then A contains a subgroup of order d.
Solution. Given a finite abelian group A of order n and d/n .
Let n = p{'p3*...p¥, where p;’s are distinct primes and e; > 0.

Then by Lemma (7.3.5) we get

A=Sp)®S(p:) ®...dS(pr)
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where [S(p;)| = p5, 1 <i<k.

Let d = p{l p§2 . pi’“, since p{ * divides p;’, then by first Sylow theorem S(p;)

has a subgroup S’ (p;) of order pzfi, 1<i<k

Now, it may be seen that B =S (p;) @S (p2) @ ... ® S (px) is a subgroup

of A of order d.

8.3.3 Example : Prove that every group of order 2p must have a normal

subgroup of order p, where p is prime number.

Solution. Let G be a group of order 2p, where p is a prime. Since p|g

then by first Sylow theorem G has subgroup H of order p. Since [G : H| = 2

then H > G. Thus G has a normal subgroup of order p.

8.3.4 Example : If a group G of order p™ (p is a prime) contains exactly

one subgroup of orders p, p?,...,p" ! then G is cyclic group.

Solution. Given a group G and |G| = p", where p is a prime and n is

positive integer. By first Sylow’s theorem G has a subgroup H of order p™~!.
Again by first Sylow theorem H has subgroups of orders p, p?, ..., p" 2.

Since G has exactly one subgroup each of orders p, p?, . .., p" ! then all proper

subgroups of G are subgroups of H.

Let a € G and a ¢ H. Suppose O(a) < p" then a generates a proper
subgroup K of order less that p™. Hence K C H and there by a € H which
is a contradiction. Therefore O(a) = p™ and G = [a]. Hence the result.
8.3.5 Example : If H is normal subgroup of a finite group G and if the
index of H in G is prime to p then H contains every Sylow p-subgroup of G.
Sol. Let |G| =p"q, (p,q) =1. Given H > G and ([G : H],p) =1
= (%,p)—l = |H|=p"q, (p,q1) =1

By first Sylow theorem H has a Sylow p-subgroup K, where |K| = p™.
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Now K is also a Sylow p-subgroup of G.
Let L be any Sylow p-subgroup of G then by second Sylow theorem L is
conjugate to K.
Let L =gKg 'forsomeg € Gthen L = gKg ' C gHg ' =H (since H > G).
Thus all Sylow p-subgroups of G are contained in H. Hence the result.
8.3.6 Example : Every group of order p?q, where p, ¢ are distinct primes,
contains a normal Sylow p-subgroup and it is solvable.
Solution. Let G be a group and |G| = p?q where p, ¢, are distinct primes.
By first Sylows theorem G has a Sylow p-subgroup and a Sylow ¢-subgroup.
Case (i) Let p > ¢. The number n, of Sylow p-subgroup of G is given by
n, = 1+ kp, where k is a non negative integer and (1 + kp)/q .
Now 1 +kp =1 since p > ¢ = n, = 1. Therefore G has a unique Sylow
p-subgroup H of G of order p?. Hence H > G.
Case (ii) Let p < ¢. The number n, of Sylow g-subgroups of G is given by
ng =1+ kq and (1 + kq)/p*.
=1+kg=1, p or p>
If 1+ kg =1 then G has a unique Sylow g-subgroup L of order ¢ and L > G.
Suppose 1 + kq # 1 then 1 + kq # p, since g > p.
Thus 1 + kg = p? i.e., there are p? Sylow g-subgroups each of order ¢ in G.
Hence G has p?(¢g — 1) distinct non identity elements of order ¢ and G
has p?>q—p?(q—1) = p? elements which are not of order q. These p? elements
must be the elements of a Sylow p-subgroup of G. This shows that G ha a
unique Sylow p-subgroup H of order p? and hence H > G
In any case G has either a normal Sylow p-subgroup H of order p? or a

normal Sylow g-subgroup L of order ¢g. This proves the first part.
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If G has a subgroup H then {e} C H C G is a normal series whose
factors are H and % which are abelian (since every group of order p* and p
are abelian). Hence G is solvable.

If G has a subgroup L then {e} C L C G is a normal series whose factors
are abelian. Hence G is solvable in this case also. In any case G is solvable.
8.3.7 Example : Prove that there are only two non abelian groups of
order 8.

Solution. Let G be a non abelian group and |G| = 8.

If G contains an element of order 8 then G is cyclic and abelian which
is a contradiction.

If every element of G is of order 2 then G is abelian which is a contra-
diction.

Therefore G has an element a of order 4. Let b € G such that b &€ [a] then
G = [a] U [a]b.
If b* € [a]b then b € [a] which is a contradiction. Therefore b* € [al.

If > = a? or a® then O(b) = 8 and G becomes abelian which is a con-
tradiction. Thus > = e or a. Since [a] is of index 2 in G, [a] > G. Hence
b~tab € [a].

Since O(b~'ab) = O(a) = 4, we have either b~'ab = a or a>.

If b='ab = a then ab = ba and G is abelian which is contradiction. Thus
b~tab = a?

Thus we have two non abelian groups of order 8.

(i) Gy = [a,b] with defining relations a* = e, > =e, b lab= a’.

(ii) Ga = [a,b] with defining relations a* = e, b* =a? b 'ab=d?.

The first is the octic group and the second is the quaternion group. It may be
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seen that the quaternion group contains only one element of order 2, where
as the octic group has more than one element of order 2.
Therefore G; and (G5 are non isomorphic. Hence the result.
8.3.8 Note : (i) We have already seen that there are only three abelian
groups of order 8. They are of types (2,2,2), (2,4), (8).
The following are the non isomorphic abelian groups of order 8.
Zo® Zy® 2o, Zo®Zy, Zs

(ii) There are five groups of order 8 upto isomorphism. Three of them are
abelian and the remaining two are non abelian (octic and quaternion )
8.3.9 Example : Prove that there are no simple groups of orders 63, 56
and 36.
Solution. Let G be a group of given order .
(i) Given |G| =63 =327
By first Sylow theorem G has a Sylow 3-subgroup of order 9 and a Sylow
7-subgroup of order 7. By third Sylow theorem n, the number of Sylow p-
subgroups of G divides |G| and n, =1+ kp.
Therefore ny; = 1+ 7k and (1 + 7k)/3%7

= (1+7k)/3?

= (14+7k)/9

= k=0
Thus ny; = 1 and hence G has unique Sylow 7-subgroup H and H > G. Thus
G is not simple, since it has a normal subgroup of order 7.
(ii) Given |G| =56 = 23.7
By first Sylow theorem G has a Sylow 2-subgroup of order 8 and a Sylow
7-subgroup of order 7. By third Sylow theorem n; the number of Sylow 7-
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subgroups of G divides |G| and n; = 1+ 7k.

= (1+7k)/8

=k=0o0rk=1

= n; =1 or 8.

If n; = 1 then G has a normal subgroup of order 7 and G is not simple.
Suppose n; = 8 then G has eight Sylow 7-subgroups of order 7 and each
Sylow 7-subgroup has 7 — 1 = 6 elements of order 7. Therefore there are
8(7 — 1) = 8(6) = 48 elements of order 7 and the remaining elements
56 — 48 = 8 elements must form a unique Sylow 2-subgroup.

Since G has normal subgroup of order 8 then G is not simple in this case
also. Hence the result.

(iii) Given |G| = 36 = 22.3?

The number of Sylow 3-subgroups n3 = 1 + 3k divides |G| = 22.3%.

Thus (1 +3k)/2>=k=0o0r 1= nz=1or4.

If n3 = 1 then G has unique subgroup of order 32 = 9. Therefore G has a
normal subgroup of order 32 = 9 and G is not simple.

If ng = 4 then G has four Sylow 3-subgroups of order 9 and each Sylow 3-
subgroup has 32—1 = 8 elements of order 3. Therefore there are 4(3*—1) = 32
elements of the Sylow 3-subgroups and the remaining 36 — 32 = 4 elements
must form a unique Sylow 2-subgroup of order 4. Thus G has a normal sub-
group of order 4 and G is not simple in this case also. Hence the result.
Alternative Method : Given |G| = 22.3%. By the first Sylow theorem G
has a Sylow 3— subgroup H of order 9. Since [G : H| = 4 then there exist a
homomorphism ¢ : G — Sy with ker¢p = (| vHz L.

zeG
If ker¢ = {e} then ¢ is one-one and G C S; = G is isomorphic to a subgroup
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of Sy. This is not possible, since |G| = 36 and |Sy| = 24.
Now ker¢ = (| xHz ' # G and ker¢ > G. Thus G has nontrivial normal
subgroup andxeGG is not simple. Hence the result.
8.3.10 Example : Prove that a group of order 108 has a normal subgroup
of order 27 or 9. i.e., there is no simple group of order 108.
Solution. Let G be a group and |G| = 108 = 23.33.
The number of Sylow 3-subgroups is n3 = 1+ 3k and (1 + 3k)/22.3
= (14 3k)/2?
=k=0orl
If £ = 0 then n3 = 1 and hence G has a unique Sylow 3-subgroup of order
27 then by Example (13.2), we have H is normal in G. Thus G has normal
subgroup of order 27.
Suppose k = 1 then n3 = 4 and G has four Sylow 3-subgroups of order 27.
Let H and K be any two distinct Sylow 3-subgroups of G, we have
]L{[i!}% B ]ijf% =108

27

:>|HmK’|2Z

HE]| =

Further |H N K/27. Since H and K are distinct we must have |H N K| = 9.
Now |[HN K| > H and |[H N K| > K (since every subgroup of order p"! is
normal in a group G of order p").

Consider N(HNK). Now HC N(HNK)and K C N(HNK)

Since N(H N K) is the largest subgroup of G in which H N K is normal.

121



Therefore HK C N(H N K). Note that

[HI[K| _ 27(27)
\HNK| 9

IN(HNK)| > |HK| = =81
Further by Lagrange’s theorem we get |N(H N K)|/|G]
= IN(HNK)| =108 = |G| and N(HNK)=G. Hence HNK > G.
Thus G has a normal subgroup of order 9 and G is not simple group.
8.4 Groups of order pg, where p, ¢ are primes and ¢ > p :
Let G be a finite group and |G| = pq, where p, ¢ are prime numbers and
q > p. By first Sylow theorem G has Sylow p-subgroup of order p and a
Sylow g-subgroup of order gq.

By third Sylow theorem n, the number of Sylow g-subgroup of order ¢
is given by n, = 1 + Ag, where X is a non-negative integer and (1 + Aq)|p.
If A >0 then 1+ Ag > p (since ¢ > p) and hence (14 A\¢) tp = A =0 and
nqg = 1. Therefore G has unique Sylow g-subgroup K of order ¢ and K > G.
Since ¢ is prime then K is cyclic.

Let K = [b], where b? = 1 = e. Further n, the number of Sylow p-
subgroups of order p is given by n, = 1+ pup and (1+ up)|g. Since ¢ is prime,
we must have either 1+pup =1 or 14+up=q = 1+pup =1o0r g = 1(mod p).
Therefore we consider the following two cases:
case(i) suppose 1 + pup = 1 then n, = 1. Therefore G has a unique Sylow
p-subgroup H of order p and H > (. Since p is prime then H is cyclic group.
Let H = [a], where o = e. Clearly H N K is trivial. Therefore hk = kh V
he H, ke K. Now ab € G and O(ab) = pg. = G = [ab] and G is cyclic.
case(ii) Suppose ¢ = 1(mod p) then n, = 1 + up = ¢ and G has ¢ Sylow

p-subgroups of order p. Since p is prime then they are cyclic groups. Let
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H = [a] be one of the Sylow p-subgroups of G, where a? = e then [a, b] is the
group generated by a and b, contains both H and K. Hence both |H| and
|K| divides |[a,b]| = |[a,b]| = pq and G = [a, ]].

We have K > G then a='ba = b", for some integer .

If r = 1(mod q) then r = 1+ kq and a 'ba = b" = b1** = b = ab = ba = G
is abelian. = n, = 1 which is a contradiction. This shows that  # 1(mod q).

Thus G = [a, b] with the following relations:
a? =1=0% a'ba="b", r #Z 1(mod q) (8.4(a))

We have a~'ba = b" = (a"'ba)? = b*" = a 'b?a = b*". By induction we
get a 'Wa = b, Further a 'ba = b" = a Y(a'ba)a = a a = b =
a~2ba® = b’ . By induction we get a Pba? = b = b =b" (since a? = 1)
= r? = 1(mod q) (since O(b) = q)

The integer r in the equation (14.2(a)) is a solution of the congruence equa-
tion

ZP = 1(mod q) (8.4(b))

Conversely, if r is a solution of the equation (14.2(b)) then the defining rela-
tion equation (14.2(a)) determine a group consisting pg elements a/d/, 0 <
1<p—1, 0<7<¢—-1

We have r? = 1(mod q) = rPr? = 1(mod q) = (r?)? = 1(mod q). Therefore
r? is a solution of equation (14.2(b)). By induction, it may be seen that 77 is
a solution of equation (14.2(b)), 2 < j < p— 1 and they all give rise to the
same group, because replacing a by a’ as a generator of H replaces r by r7.

It may be seen that the condition in case(i) 1+ up = 1 is independent
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of p and ¢q. Hence a cyclic group of order pq always exists. If ¢ > p and
q = 1(mod p) then a non-abelian group G = [a,b] also exists, besides the

cyclic group of order pq with the following defining relations.
a? =1="0% atba="b", r % 1(mod q), v’ = 1(mod q) (8.4(c))

From the above discussion we conclude the following:

There are atmost two groups G of order pq, where p, ¢ are prime numbers
and g > p.

(i) The cyclic groups G of order pq.

(ii) The non-abelian group G = [a, b] with the defining relations given in the
equation (8.4(c)), if ¢ = 1(mod p).

8.4.1 Note : (i) If ¢ # 1(mod p) then there exist only one cyclic group of
order pq.

(i) If ¢ = 1(mod p) then there exist two non-isomorphic group of order pq.
8.4.2 Remark : If p, ¢ are prime numbers and ¢ > p then every group GG
of order pq has a unique Sylow g-subgroup of order ¢ and this subgroup is
normal in G. Hence there is no group of order pq is simple (if ¢ > p).

8.4.3 Example : (i) Every group order 15, 35 are cyclic.

(ii) There are no simple groups of order 15 and 35.

8.5 Groups of order p?, where p is prime number.

We know that every group of order p? is abelian and there are only two
abelian groups of order p?. Therefore there are only two group of order p2.
(i) The abelian group of type (p,p) and itis Z, ® Z,.

(ii) The abelian group of type (p*) and itis Z, .

8.6 Summary
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In this lesson we have defined of p-group, p-subgroup and sylow p-group.
Also we have proved Cauchy’s theorem for abelian group and first, second
and third sylow theorems. Further we have proved the applications of sylow
theorems and we have discussed the groups of order pg and groups of order
p?, where p, ¢ are prime numbers.

8.7 Model Examination Questions

(1) Let G be a finite group and p is prime. If p/|G| then G has an element
of order p.

(2) Let G be a finite group and let p be a prime number. If p™ /|G| then G
has a subgroup of order p™.

(3) Let G be a finite group and p is prime. If p/|G| then G has an element
of order p.

(4) A finite group G is a p-group if and only if its order is a power of p.
(5)  Let G be a finite group and let p be a prime number then all Sylow
p-subgroups of G are conjugate and their number n, divides O(G) and sat-
isfies n, = 1(mod p).

(6) Prove that a group of order 1986 is not simple.

(7) If the order of a group is 42. Prove that its Sylow 7-subgroup is normal.
(8) Let G be a group then prove that | % |# 77.

(9) Show that a group of order p?q, where p and ¢ are distinct primes, must
contain a normal Sylow subgroup and be solvable.

8.8 Glossary

p-group, p-subgroup, sylow p-group, Cauchy’s theorem and sylow theorem,
Conjugate subgroups, sylow p-subgoup,unique normal subgroup, simple group,

cyclic group.
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UNIT-III
LESSON-9

IDEALS OF RINGS

9.1 Introduction : In this lesson, we study the ideals of rings, principal
ideal ring and quotient ring.
9.2 Ideals of Rings
9.2.1 Definition : A non empty subset S of a ring R is called an ideal
(two sided ideal) of Rif (i) a—b€S V a, beS.
(ii) are Sandrae S V re R,ae S.
9.2.2 Definition : A non empty subset S of a ring R is called a right (left)
ideal if (i) a—be S V a, beS.
(ii) are S(raeS) ¥V reR,acs.
9.2.3 Property : Prove that every ideal of a ring R is a subring of R.
Proof. Let S be an ideal of Rthena—b€ S Va, be S.
Alsoae S, beS=aecSandbeR (S C R)
=abe S (sincear € S). Therefore S is a subring of R.
9.2.4 Note : Converse of the above property need not be true.
9.2.5 Example : Prove that S = (Z,+,.) is a subring of R = (@, +,.),
but not an ideal of R = (Q, +,.).
Sol. S is a subring of R but S is not an ideal of R because ar ¢ S for r € R,
a €S, sincer:%,a:2:>ar:§§é5.
9.2.6 Note : (i) Every ideal is both right and left ideal.
(ii) In a commutative ring every right or left ideal is a two sided ideal.
(iii) Every ring R has at least two ideals {0} and R itself then these two

ideals are called trivial ideals of R. If R has any ideal other than these two
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then they are called proper ideals of R.
9.2.7 Example : Prove that every subring of the ring of integers (Z, +,.)
is an ideal of (Z,+,.).
Sol. Let S be a subring of Z. Forany a, be S =a—-0b€ S
Let r € Z and a € S then
ra=a+a+---+a (rtimes) if r >0

=0 ifr=20

= (—a)+ (—a) -+ (—a) (r times) if r <0
Since S is a subring we have for any a € S
a+a+...+a (rtimes)e S (by closure of addition) and 0 € S,
(—a)+(—a)+...+(-a) e S=>racS VreZzZ acS
Similarly ar € S V r € Z, a € S. Therefore S is an ideal of Z.
9.2.8 Example : Prove that the right as well as left ideals of a division
ring are trivial ideals only.
Proof. Let D be a division ring. Let I be any ideal of D.
If I = {0} then there is nothing to prove.
Let I # 0. Let a be any nonzero element of I == a € D = a ' € D
Wehavea€ I, a ' €D = aa ' €1 (I is an ideal)

=1lel.

For any r € D we have lre [ = r el
Therefore D C I, but we have I C D. Hence [ = D
.. D has only trivial ideals.
9.2.9 Example : Let R be a ring and a € R then aR = {ax : z € R} is a
right ideal of R and Ra = {za : « € R} is left ideal of R.
Sol. (i) aR = {az : z € R}
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0e R=a0=0¢€aR. .. aR is anonempty subset of R

Let axq, axs be any two elements of R, where 1,19 € R
= axr; — ary = a(r] — 12) € aR (x1 — 29 € R)
Let r € R and az; € aR then (az,)r = a(z17) € aR (17 € R)
. aR is a right ideal of R. Similarly Ra is a right ideal of R.
9.2.10 Note : (i) If R is commutative then aR is an ideal of R.
(ii) If R has unity then a = al € aR
(iii) aR is the smallest ideal of R containing a.
Suppose a; R is another ideal of R containing a. Let ar be any element of
aR we have a € ayRand r € R = ar € yR  (a; R is an ideal)
= aR Ca;R. .. aR is the smallest ideal of R containing a.
9.3 Rings of Matrices
9.3.1 Rings of Matrices : Let R be a ring and R,, be the set of all n x n
matrices whose elements are from R then R, forms a ring with respect ma-
trix addition and matrix multiplication.

In general if A, B € R,, where n > 1 then AB # BA
. For n > 1, R, is a non commutative ring. Also R, is not an integral
domain because R, has nonzero divisors, A #0,B #0 = AB =0

Suppose R has unity we denote by e;; the matrices in R,, whose (i, j)

entry is 1 and whose other entries are zeroes.

1 00 010
i.e. In Rs3 consider e;; = 000 |,en= 000 etc.
0 00 0 00

The eij/s, 1 <14,7 < n are called matrix units.

From the definition of multiplication of matrices, it follows that
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eijen =01if j #k
=eyif j =k Le. ejjer = 0
where 0;, =0if j # k
=1if j =k, is called the Kronecker delta.

1 00 0 00 0 01
In Rs, considere;; = [ 0 0 0 |,e23=] 0 0 1 |[,es=|[ 0 0 0
000 000 000
then
1 00 000 000
einezs =1 0 0 0O 001 (=1]102060
000 0 00 0 00
1 00 0 01 0 01
epeiz=1 0 0 O 000 (=000 ]=e¢€
0 00 0 00 000

Also if A = (a;;) € R, then A can be uniquely expressed as a linear

. . / .
combination of e;; s over R ie., A= > a;e;, a;; €R.
1<i,j<n

11 aiz2 A3

For example A = | a9, a99 s then

a31 Q32 a33

A = Z aijeij

1<i,j<3

= ay1€11+ta12€12+a13€13+A21€21 +A22€22+A23€23+A31€31 +A32€32+A33€E33

a0 0 0 a2 0 00 0
= o o0+ 0 0 O}+t---+] 00 O
0 00 0 0 0 0 0 ass
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11 Qa2 Q13

- a21 A2z A3

a31 aszz G33

Let S be the set of n x n matrices in which all the entries below diagonal

are zero ) )
a;p Q12 ... Qip
0 ag2 ... Q9pn

i.e., Let S consist of matrices | . , i |, ai; €R.
0 0 ... aum

then S is a ring with the usual addition and multiplication of matrices
and is called the ring of upper triangular matrices. Similarly we have the
ring of lower triangular matrices.
9.3.2 Example : Let R be the n x n matrix ring over a field F, for any
1 <i < n.Let A;(or B;) be the set of matrices in R having all rows(columns)
except possibly the i’ row(column) zero then A; is a right ideal and B; is a

left ideal in R.

0 0 0
Sol. Az = { a;1 Qo ... Qip aij € F}
0 0 0
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0 0
Let A= | a;; ap
0 0

two elements of A;, a;;,b;; € F

0
A-B= a;1 — b
0
i1 T2
Let r = il T2
Tn1 Tn2
0 O
Ar=| a;y ap
0 O

0 0 0 0
ain | > B=1 ba b ... by
0 0 O 0
0 e 0
ajo — bio Ain — bin |
0 e 0
Tin
rim | € R then
T'nn
0 i T2 T'in
Qin i1 T2 Tin
0 Tnl Thn2 Tnn
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0 0 0
;1711 + QipT21 + ..o + ATl G1T12 T Qo2 + ..o+ QinTra ... QiiT1p + G272, + ...
+ainrnn
0 0 o 0

= Ar € A;, where each element of i** row in F.
.. A; is the right ideal of R. Similarly B; is the left ideal of R.
9.3.3 Example : Let R be the ring of 2 x 2 upper triangular matrices over

a field F' then the subset [ = {

a€ F} is an ideal of R.

00
0 a1 0 as
Sol. Let A, Bel = A= , B= , a1,a9 € F
0 0 0 0
0 a; — as
A—B= €el, a—a€cF
0 0
0 aq T1T To ry T
Ar = where r = €ER
0 0 0 T3 0 T3
0 ayr
_ 173 cr
0 O
rer 0 a 0 ra
A 1 T2 1 _ 101
0 r3 0 0 0 O

Hence [ is an ideal of R.
9.3.4 Example : Let R be the ring of all functions from the closed interval
[0, 1] to the field of real numbers. Let ¢ € [0,1] and I = {f € R|f(c) = 0}
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then [ is an ideal of R.

Sol. Let f,g eI = f(c)=0, g(c)=0
(f =g)e=flc) —g(c) =0-0=0

S f—g€elV fgel

Let felandr € R

Consider (rf)(c) = r(c)f(c)

=rfel
Similarly fre IV fel, r e R.
Hence I is an ideal of R.

9.3.5 Example : Let R = F; be the 2 x 2 matrix ring over a field F. Let

F F
S = be the set of all upper triangular matrices over F' then S is
0 F
0 F
a sub ring of R. If [ = then [ is an ideal of S but [ is neither

right nor a left ideal of R.

a; a
Sol. Let S = b ai,as,as € F » be sub ring of R.
0 as
0 a
I = acF
0 0
0 a 0 o0
(i) Let A= ,B = el, abekF
0 0 0 0
0 a—0»
A—B= el, a—beF
0 0
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reS=r=
0 as
0 a a; a 0 aa
0 0 0 as 0 O
a; a 0 a 0 aa
rA = b = 3 el
0 a3 00 0 O

.. I is an ideal of S.
(ii) To prove that I is neither right nor left ideal of R.

a1 Q9
Letre R=r= ., a; € F
a3 aq
0 a
Let Acl = A= , a€ekF
00
0 a a; a aas aa
A?“: ! 2 = 3 4 ¢[
0 0 a3 Qg 0 0
a; a 0 a 0 aa
TA: ! 2 = 1 ¢I
as G4 0o o 0 asa

.. I is neither right nor left ideal of R.
9.3.6 Example : If A is an ideal in the ring R then the ring A,, of all n x n
matrices with entries from A is an ideal of R,,.
Sol. Given A is an ideal in R.
Let By = (b;;) and C; = (c;;) be the elements of A, where b;;,¢;; € A for
By — Cy = (bjj — ¢;j) where b —c; € A, 1<i,j<n
= B, - C) €A,
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Let r = (Tij)a Tij €ER

by bz ... bip 11

Bﬂ” =

bnl an bnn T'n1

where all the entries belongs to A. = Byr € A,,.

Similarly rB; € A,,, Therefore A, is an ideal of R,,.

bi1711 + bioror + ..o @it biiTio + biores + .o+ b1t

bnlrll + bn2r21 + ...+ bnnrnl bnl’r12 + anng + ...+ bnnrnQ

bi171n 4 bioro, + . ..

+b1n7nnn

bnlrln + ...
+bnnrnn

9.3.7 Theorem : If a ring R has unity then every ideal I in the matrix

ring R, is of the form A,, where A is an ideal of R.
Proof. Let (e;5), i,j = 1,2,...,n denote the matrix units in R,.
Let A = {an € R‘ Yo aeij € [} then we claim that A is an ideal of R.

Let aq1,b11 € A then there exists matrices

a = Z Q€45 and B = Z bijel-j in I then

a—LB=> (a; —bije; €I (. 1isan ideal)

=>a11—b11€A

Let r € R and ay; € A with ) a;je;; € 1

Consider (3 a;jei;)(rein)

= (a11€11 + a12€12 =+ .. .)(7‘611)

= ajije11re1 + aaeiarerr + ...
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= >_(aijeij)ren
=Y anreqg €1 (ejerr =€ if j=Fk) ie, ejen =eqif j=1)
= apreA
Similarly ra;; € A Vre R, a1 € A
. Ais an ideal of R.
Now to show that I = A,,. Let z =) a;;e;; € I
Let r and s be some fixed integers between 1 and n
Consider e1,(> aijeij)est
=e1. (> aisein) (eijes1 = eq if j = s and eq,e;1 = eqq if r =1)
:Z 61r(aisei1)
=> apsenn €1
= a,, € A for any r and s
= a;; € A for any ¢ and j
= all the entries in the matrix z = ) a;je;; are in A
=x€eA,
I CA, (15.3.7(a))
Conversely let © = ) a;e;; € A,.
For a;; € A there exists a matrix ) b,se,5 € I such that by; = a;
then e;1 (D brsers)er;

= eil(Z brserselj)

=e1(d brierj) (ers€1j =€ if s =1)
= Z eil(brlerj)

= buey; €1 (einer; = e if 1 =1)
= a;je;j € I for each 1<i,j7<n

= > a;je; €1 (" I is an ideal)
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=axecl

LA, C I (15.3.7(b))
On using (9.3.7(a)) and (15.3.7(b)) we get A, =1
9.3.8 Corollary : If D is a division ring then R = D,, has non trivial ideals.
Proof. Let I be any ideal in D,
If I = {0} there is nothing to prove
Let I be any non zero ideal in D,, then I = A,,, where A is some ideal in D.
But D is a division ring

= D has only trivial ideals

= A=D
= A,=D,
=I1=D,

.. Dy, has only trivial ideals.

9.3.9 Note : (i) D has only {0} and D are right as well as left ideals. But
we have seen in the Example (15.3.2) for n > 1. D,, has nontrivial right as
well as left ideals. But from the theorem (15.3.7) since {0} and D are the
only right or left ideals.

.. D,, cannot have non ideal right (or) left ideals which is not true.

.. In general the theorem (15.18) is not true if the word ideal is replaced by
right or left ideals.

(ii) If R is a ring without unity then theorem (15.3.7) is not necessarily true.
i.e. R is aring with unity is also must in the theorem (15.3.7).

9.3.10 Example : Let (R,+) be an additive group of order p, where p is
prime number. Define multiplication in R by ab=0 V a, b € R. Then R

has no unity.
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Ifl€e Rthenla=a.1l=a

But by the definition of multiplication 1.a =0

.. R has no unity.

If X is any additive subgroup of (R, +) then X is an ideal of R.

because if x € X and r € R, we have

xr=0=rreX (0e X)

. X is an ideal of R.

.. Any subset X of R is an ideal of R iff X is a subgroup of R under addition.
But R is of order p then the only subgroups of R are {0} and R itself.

.. The only ideals of R are {0} and R itself. Then by the theorem (15.3.7)
The only ideals of Ry are (0)2x2 and Ry only (15.3.10(a))

a

0 0
Also I # {0} and I C R, which is a contradiction to (15.3.10(a))

Now consider [ = {

a,be R} then [ is an ideal of Ry

Therefore, in general the theorem is not true for rings which is not unity.
9.3.11 Theorem: Let (A;);cn be a family of right (left) ideals in a ring R.
Then () A; is also a right(left) ideal.

Proofl'.eALet a,b e ﬂ A; = ae€ A, be A, for each i
=a—0be A forez;i/}\li#a—bé ﬂ A;
LetrERandaE‘ﬂAiireR;%AdaeAi for each 7
= ra € A; for eachli/\ (A; is an left ideal)

Similarly ar € A; for each ¢ (A; is an right ideal)
sra€ (VA = () A;is aleft ideal.

1ENA 1EN
ar € () A; = ) A; is a right ideal.
ien i€n

9.3.12 Definition : Let S be a subset of R. Let A = {A] A is a right ideal of R containing S}
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then A is non empty, since R € A

Let I = (] A. Since S C A for each A € A
= [is tﬁggmallest ideal containing S

= [ is an ideal generated by S.

If A contains all right ideals A, where S C A for each A € A then [
is called the smallest right ideal of R containing S and is denoted by (5),.
The smallest right ideal of R containing a subset S is called a right ideal
generated by S.

Similarly if A contains all left ideals A, where S C A for each A € A
then [ is called the smallest left ideal of R containing S and is denoted by
(9);. The smallest left ideal of R containing a subset S is called a left ideal
generated by S.

If S ={ay,aq,...,an}is afinite set then (5), is also written as (ay, az, . .., Gy )r-
Similarly (5), is also written as (a1, ag, . .., a,,);. S is also written as (ay, ag, . . ., ap).
9.4 Principal Ideal :

9.4.1 Definition: A right ideal I of a ring R is called finitely generated if
I = (a1,as,...,ay), forsome a; € R, 1 <i <m.

9.4.2 Definition : A right ideal I of a ring R is called principal right ideal
if I = (a), for some a € R (i.e., generated by single element).

9.4.3 Note : In a similar manner we define a finitely generated left ideal,
a finitely generated ideal, a principal left ideal and a principal ideal.

9.4.4 Definition : A ring in which each ideal is principal is called a prin-
cipal ideal ring (PIR). If R is an integral domain with unity which is a PIR
then it is called principal ideal domain.

9.4.5 Example : All the ideals in the ring of integers Z are principal ideals.
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Sol. Let I be any non zero ideal in Z

Let n be the smallest positive integer in I then for any m € I we write
m =nq+r where 0 <r <n  (by division of algorithm)
=>r=m-nqg€l (m € 1, I is an ideal,= ng € [ for any q € Z)

=recl where0<r<n

=r=0 (by choice of n i.e. n is the smallest positive integer in I)
= m =nq
= [ =(n)

9.4.6 Note : Let [ be an ideal in R for a,b € R we define a = b(mod I) if
a — b € I then this congruence is an equivalence relation in R. Every equiv-
alence relation give rise to equivalence classes.
Let R/I denote the set of equivalence class and a € R/I be the equivalence
class containing a.
Consider a € R/I
Let be a= b= a(mod I)
=b—ael
= b—a =z, for some x € |
= b=a+x, for some x €
= every element of a is of the form a + z, for some x € [
=>a=a+1
We shall define addition and multiplication in R/
Ga+b=a+bV a, be R/I and
ab=ab V a, be R/I

To show that these binary operations are well defined.

Leta=¢ b=dthena—cel,b—del
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=a+b=c+d
=a+b=c+d
ab — cd=a(b—d) + (a — c)d (a — ¢,b— d € I which is an ideal)
=ab—cdel
= ab=cd
= ab=c.d
(i) Let a@,b,¢c € R/I then
a+(b+e)=a+(b+c)=a+ (b+c)
=(a+b) +c
=(a+b)+e¢ (a,b,c € R)
=(@+0b)+ec

(ii) O is the additive identity in R/
(iii) For every a € R/I we have
a+(—a)=a+(—a)=0

(—a)+a=0
(iv) a+b=a+b=b+a
=b+a Va,beR/I
(v) a(b.c) = a(bc) = a(bc)
= (ab)c = (ab)c
= (a.b)c

Then (R/I,+,.) is a ring called quotient ring modulo I.
9.4.7 Definition : Let I be an ideal of a ring R then the ring (R/I,+,.)
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is called the quotient ring modulo [.

If I = R then R/I is the zero ring.

If I = (0) then R/I is the same as the ring R which we identify a 4 (0) with
a€R

9.4.8 Note : If S is any subset of R then the ideal generated by S is the
smallest ideal containing S.

We shall show that

(a):{ > riasi+m+a5+na/r,s,m,siER,neZ}

(a), = {Zci:’m—il—te'rszzm} reRneZ}

(a)y={ra+na /reRneZ}

If 1 € R the they will become

(a) = { > riasi/ri, s; € R}
i( finitesum)

(a), = {ar / r € R} and (a), = {ra / r € R}

In this case the symbols RaR,aR and Ra are used for (a), (a), and (a); re-

spectively.

LetS—{ > n-asz-—i-m—i-as—l—na/r,s,m,sieR,nEZ}

We shall sﬁg\:\? Zﬁf;?)a € S and S is the smallest ideal containing a.

Taking r;, =s;,=r=s=0andn=1wegetaecs

We shall show that S is an ideal.

Consider > r;as; + ra + as + na and | rias; +7r'a+as +n'abe any two

elements of S then

(Y rasi+ratas+na)—( S riasi +r'a+as +na)

finitesum finitesum

=( X masi— X riasi)+(r—rat(s—s)a+(n—naes

finitesum finitesum
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wherer —r' € R,s—s e Rn—n' € Z
= S is a subgroup of R under addition.
Let ¥ € Rand Y. ras; +ra+as+na) €S

finitesum

Consider 7'[ Y. ras; +ra+ as + na))

finitesum

/ / / /
= > rras,+rra+ras+rna)
i( finitesum)

= > rjasi+rla+r/as—|—7‘/(a+a+...+n times)

j(finitesum)
where r; = r'r; and rp =17
=] Y  rmasitras)]+(rm+r)a+(ra+ra+...+7'a) (n—1 times)

Jj(finitesum)

=[( > rjas;+r'as)+ra+0s+0a]+ (0+r'a+0s+0a)+...+

j(finitesum)

(0+7'a+0s40a)+... (n—1) times
es (" S is closed under addition)

Similarly [ rias; + ra + as + nalr’ € S
.. S is an ideal.
Suppose S is another ideal of R containing a i.e. a € S
thenra € S V re R,andas€ S V se R, na€ S V n¢€ Z and
S rias; € S for ris; € R
= Y . rias; +ra+as—+na € S’
=S5cs
= S = (a)
9.4.9 Example : Let I be a right (left) ideal of R and it contains a unit of
Rthen I =R
Sol. Let I be a right ideal of R = I C R
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Let u be any unit in 7 = u~! exists and u™! € R
Suwut=1€l (. I is right ideal)
s.lelthenl =R
9.4.10 Example : Let (n) = {nala € Z} be an ideal in Z. If n # 0 then
the quotient ring Z/(n) is Z,
Sol. Consider Z/(n) = {a + (n)| a € 2}
={0+ (n), 14 (n),...,(n—1)+ (n)}

9.4.11 Example : Let R be a ring with unity and let R[z] be the polyno-
mial ring over R. Let I = (z) be the ideal in R[z] consisting of the multiples
of = then the quotient ring R[x]/I ={a | a € R}

Sol. Let [ = (z)thenzxel=x=a+1=I

=7z=0
Consider any element a + bx +cz? +...... € R[z]/I then
a+br+cr+...... =a+bT+ea?+......

S R[z)/T={a|a€ R}
9.4.12 Example : Find the quotient ring R[z]/(z* + 1)
Sol. 2+ 1€ (2 + 1)

=22+1=0
=224+1=0
= 2=0-1
=-1
B=a2r=227=-7 and 2% = 2222 = 2222 = (-1).(-1) =1
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Also 25 = 2203 = (—-1)(-7) =7
In general 2™ = 4 1 if n is even

=4 7z if n is odd.

Let a+bx +cx?+...... be any element of R[z]/(z* + 1) then
a+br+ca?+...... = a+br+ci?+......
a+br+ex?+......

B=b—d+f...... eER
- Rlz]/(2® + 1)={a+ Bz /a, B € R} where 22 = —1
9.4.13 Note : R[z]/(z* + 1) is the field of complex numbers where @, & € R
is identified with o and Z is identified with /—1.

Z Q 0 @Q
9.4.14 Example : Let R = and let A = be an
0 0 0 0
n 0
ideal of R then R/A = /n € Z}
00
0 x 0 @
Sol. Let € ,  where z €
00 0 0

e}
S
o
8
Ol

ie. € A, where A is an ideal of R = =

=}
=}
=}
e}

n x
Consider any element € R/A then
0 0

@) (@)
oK
Il
(@n]]
~
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n 0
0 0
n 0
S RIA= { nezZ }
00
n 0
9.4.15 Note : If the element is identified with n € Z, then R/A
0 0
n
is identified with ring of integers, where is identified with n.
0 0
9.4.16 Example : Find the non trivial (i) right ideals
- : Z Q
(ii) ideals of the ring R =
0 0

Sol. (i) Let A be any non zero right ideal of R

LetX:{neZ

€ A for some a € @) } then X is a subgroup
0 0

of Z under addition. Let ny,ny, € X

ny ap
n€X = € A, whereny € Z, a1 € Q)
0 0
N9 A9
no € X = € A, where ny € Z, as € Q
0 0
ny ap N9o Qo
= - €A (A is a right ideal)
0 0 0 0
ny—ng a—a
N 1 2 a—ax )
0 0

= Ny —Ng € X
.. X is a subgroup of Z

Since every subgroup of Z is of the form nZ, for some n € Z
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Let X = n,Z, for some n, € Z

n a
X=<nez: cA
00

Case (1) X # (0) ie., ng#0
’TL()Z Q
0 0

We shall show that A =

ng a
Let a € @) be such that ’ € A. Let z € Z and ¢ € Q then

0 0
noZ q [0 a 7 q/ng c A
0 0 0 0 0 O
.. . o a Z Q/ no
A is right ideal and € A and eER
0 0 0 O
not q
= any element of isin A
0 0
noZ
S
0 0
nos
But A C oz Q Since x = ngZ
0 0
n()Z Q
= . Also, we have seen that every element of A
0 0
nZ g\ [ no a Z q/ng
0 0 0 0 0 O
ng a Z n
= 0 r where r = 1o eER
0 0 0 O
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ng a

0 0
= A is a principal right ideal.

case(2) Let X = (0) i.e. ng =0

= A is generated by

0
Let K = {q € Q/ 1 € A. Then K is a subgroup of ()
0 0
0 0
For 1,40 € K = n , o eF.
0 0 0 0
0 ¢1—@q . .
€A (.. Aisanideal) = ¢ —qpe K
0 0
0 K
A= , where K C )
0 0
(ii) The non trivial right ideals
noZ
A= o7 Q@ ,ng#0€ Z and
0 0
0 K
A= , where K is additive subgroup of ), R are also left ideals.
0 0
n noZ nmngZ n
Consider 1 @1 0 q _ 1Mo 19
0 0 0 0 0 0
no(mZ) q n
_ o(mZ) ¢ cA v A= 1 Q1 cR
0 0 0 0

= A is left ideal of R

. 0 K\ . :
Similarly is also left ideal of R.
0 0
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.. Even if R is non commutative we have right ideals which are also left
ideals. But each left ideal of R is not a right ideal
nom ma

0 0
ments in Z and (). Then A is a left ideal of R but A is not a right ideal of

R.

Consider A = { / meE 4 } where ng and a are fixed ele-

9.4.17 Example : Let R be a commutative ring with unity. Suppose R
has no non trivial ideals then prove that R is a field.
Sol. Let R be a commutative ring with unity
Let R has no non trivial ideals then the ideals of R are (0) and itself. We
shall show that every non zero element in R has multiplicative inverse
Let a be any non zero element of R.
Consider the left ideal Ra = {ra : r € R} of R.
Since R is commutative then Ra is also right ideal of R
= Ra is an ideal of R
1€ R = a=1la € Ra where a # 0
= Ra # {0}
= Ra = R only (since {0}, R are the only ideals of R)
Since 1 € R then 1 = ba for some b € R
=ab=1 (R is commutative)
=b=a!
.. R is a field.
9.4.18 Note : (i) Conversely if R is a field then R is a division ring and
hence it has no proper ideals.
(ii) Every field is a principal ideal ring.

9.5 Summary
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In this lesson we have defined ideals of rings. Also we have defined rings
of matrices. At end of the section we have introduced the notion of quotient
rings.

9.6 Model Examination Questions

(1) Let R be a commutative ring with unity. Suppose R has no nontrivial
ideals then prove that R is a field.

(2) Find all ideal in a pollynomial ring F'[x] over a field F.

Q Q
0 0

(3) Find right ideals, left ideals and ideals of a ring R =

9.7 Glossary

Ideal of rings, rings of matrices, principal ideal rings.
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LESSON-10

HOMOMORPHISMS OF RINGS

10.1 Introduction : In this lesson, we define homomorphism between
two rings. Further we established the fundamental theorem of homomor-
phism and the correspondence theorem. Moreover we introduce the notion
of anti-homomorphism.

10.2 Homomorphism of Rings

10.2.1 Definition : Let f be a mapping from a ring R into a ring S such
that

i) fla+b)=f(a)+ f(b) V a, beR

(i) f(ab) = f(a)f(b) V a, beR

Then f is called a homomorphism of R into S.

If f is one-one then f is called an isomorphism (monomorphism) from R into
S. In this case f is called an embedding of R into S (or R is embeddable in
S). We also say that S cotains a copy of R and R may be identified with a
subring of S. The symbol R C S means that R is embeddable in S.

10.2.2 Note : (i) If a homomorphism f from a ring R into a ring S is
both 1 —1 and onto then there exists a homomorphism ¢ from S into R that
is also 1 — 1 and onto. In this case we say that the two rings R and S are
isomorphic. It is denoted by R ~ S.

(i) If R ~ S then S ~ R. Also the identity mapping gives R ~ R for any
ring. It is easy to verify that if f: R — S and g : S — T are isomorphisms
of R onto S and S onto T respectively then ¢f is also a isomorphism of R
onto T ie., R~ S and S ~ T then R ~ T. Therefore isomorphism is an
equivalence relation in the class of rings.

10.2.3 Theorem : Let f: R — S be an isomorphism of a ring R into a
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ring S then we have the following

(i) If 0 is the zero of R then f(0) is the zero of S.

(ii) If a € R then f(a) = —f(a).

(iii) The set {f(a)la € R} is a subring of S is called the homomorphic image

of R by the mapping f and is denoted by Imf or f(R).

(iv) The set {a € R|f(a) = 0} is an ideal in R called the kernel of f and is

denoted by kerf or f~1(0).

(v) If 1 € R then f(1) is the unity of the subring f(R).

(vi) If R is commutative then f(R) is commutative.

Proof.(i) Let a € R

Consider f(a) = f(a+0) = f(a) + f(0) (f is homomorphism)

Similaly f(a) = £(0) + ()

Therefore, f(0) is the zero of S we denote f(0) = 0.

(i) Consider f(0) = f(a+ (—a)) = f(a) + f(—a)

Therefore f(—a) = —f(a)

(i) f(R) = {f(a)la € R}

Let f(a), f(b) € R where a, b€ R

Consider f(a) — f(b) = f(a —b) € f(R) (since a — b € R)

Similarly f(a)f(b) = f(ab) € f(R) (since ab € R)

Therefore f(R) is a subring of S.

(iv) Let kerf= {a € R|f(a) =0}

Let a, b € kerf = f(a) =0, f(b) =0

Consider f(a —b) = f(a) — f(b) (. f is homomorphism)
=0—0=0. Therefore a — b € kerf.

Consider f(ar) = f(a)f(r) = 0f(r) = 0. Therefore ar € kerf.
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Similarly ra € ker f. Therefore ker f is an ideal of R
(v) Let a € R. Consider f(a)f(1) = f(a.1) = f(a)
Similarly f(1)f(a) = f(1l.a) = f(a). Therefore f(1) is the identity of f(R)
(vi) Let f(a), f(b) € f(R) where a,b € R
fla)f(b) = f(ab)
= f(ba) (ab=ba Y a, b€ R)
= [(0)f(a)

Therefore f(R) is commutative.
10.2.4 Theorem : Let f: R — S be a homomorphism of a ring R into a
ring S then kerf = (0) iff fis 1 — 1.
Proof. (i) Let kerf = {0}
It f(a) = f(b) = f(a) = f(b) =0

= fla—=b)=0

=a—-b=0 (kerf = (0))

= a=". (fis1-1)
(i) If f is 1 — 1 then to prove that kerf = {0}
Let a € kerf = f(a) =0= f(a) = f(0) = a=0 (- fis1—1)
Therefore kerf = {0}
10.2.5 Theorem : Let N be an ideal in a ring R then 3 a onto homomor-
phism from R — R/N, where R/N is the quotient ring of R modulo N.
(It is called the canonical or natural homomorphism)
Proof. Let f: R — R/N defined by f(zr) =2+ N= VxR
fis homomorphism : f(z+y) =z +y=2+y= f(x)+f(ly) V z,yeR
Also f(y) =75 = 75 = f(2)./(s) Yy € R

Therefore f is homomorphism.
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fisonto: Letz € R/N 3 z€ R > f(z) =z. Therefore f is onto.
= R/N is a homomorphic image of R.
Hence there exists onto homomorphism from R — R/N.
= Every homomorphic image of a ring is of the type a quotient of R modulo
some ideal of R. This homomorphism is called natural homomorphism or
canonical homomorphism.
10.2.6 Theorem : (Fundamental Theorem of Homomorphisms)
Let f be a homomorphism of a ring R into a ring S with kernel N then
R/N ~ Imf
Proof. Define g : R/N — Imf by gla+ N) = g(a) = f(a)
g is well defined : Let a+ N =b+ N
= (a—=b)+N=N

= a—-beN

= fla—b)=0
= f(a)— f(b) =0 (f is homomorphism)
= f(a) = f(b)

= gla+ N)=g(b+ N)
g is homomorphism : Consider g(a+b) = g(a + b) = f(a+b) = f(a)+f(b)
= g(a) + g(b).
Also g(a.b) = g(ab) = f(ab) = f(a)f(b) = g(a)g(b) ¥ a b€ R/N.
Therefore g is homomorphism.
gisonto: LetbeImf 3 a€ R > f(a)=0b
= g(a) = f(a) = b. Therefore g is onto.
gis1-1: Leta, b€ R/N.

Let g(a) = g(b) = f(a) = f(b)
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= f(a) - f(B) =0

= fla—b) =0

=a—beN

= a = b(modN)

=a=>b.

Therefore R/N ~ Imgf.
10.2.7 Note : This theorem can also be stated as given a homomorphism of
rings f : R — S there exists a unique injective homomorphism ¢ : R/ker f —
S such that f = gn, where 7 is the canonical homomorphism.
Proof. g : R/kerf — S is a homomorphism defined by g(a) = f(a) then g
is injective.
Also f = gn. Since f(a) = g(a) = g(n(a)) (n(a) =a+N=aVacR)
g is unique : Let f = hn, where h : R/kerf — S is a homomorphism then
gn=hn = gn(a) =hnla) Va€R

= g(a) = h(a) V a € R/kerf
=g=h

10.2.8 Note : Let f be a mapping from a set R into a set S and A C S.
Let ffl(A) = {r € R|f(r) € A} then
(1) f~!is a mapping of subsets of S into subsets of R.
@) f(f A C A
(3) If f is onto then A C f(f~!(A))
(4) If f is onto then f(f~1(A)) = A
(5) If X is any subset of R then X C f~(f(X)).
10.3 Correspondence Theorem :

10.3.1 Theorem : Let f: R — S be a homomorphism of a ring R onto a
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ring S and let N = kerf. Then the mapping F': A — f(A) defines one-one
correspondence from the set of all ideals (right ideals, left ideals) in R that
contain N onto the set of all ideals (right ideals, left ideals) in S. It prserves
ordering in the sense that A C B iff f(A) C f(B).
Proof. Let f: R — S be a homomorphism of a ring R onto a ring S. Let
N = kerf. Let X be any arbitary ideal in S and the set A = f~1(X). Now
show that f~!(X) is an ideal in R, where
[ (X) ={x e R/f(x) € X}
Let a, be f7YX) = f(a), f(b) e X
= f(a)— f(b) e X (. X isanideal of 5)
= fla—b) e X
=a—be f7HX)
Letae f7'(X)andr € R= f(a) € X and f(r)e S
= fla)f(r) € X (. X isanideal of S)
= f(ar) € X
= ar € f7HX)
Similarly ra € f~'(X). Therefore f~'(X) is an ideal in R.
Let A be an ideal in R then f(A) is an ideal in S for if f(a), f(b) € f(A),
where a, b € A. Consider f(a) — f(b) = f(a—0b) € f(A) (- a—be A)
Let f(a) € f(A) and s € S. Since f is onto from R to S = s € S has pre
image say r in R such that f(r) = s then f(a)s = f(a)f(r) = f(ar) € f(A).
Similarly sf(a) € f(A). Therefore f(A) is an ideal in S
Let R = {A: A isanideal in R containing N = kerf} and
S'={all ideals of S }. Define F': R — S" by F(A) = f(A)
F is onto: Let X € S' = X is an ideal in S = f~'(X) is an ideal in R
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Let A= f~1(X). We shall show that f(f~'(X)) = X.
Let f(a) € f(f7'(X)), where a € f~(X)
Since a € fHX) = f(a) € X

= f(ffY(X)cX (10.3.1(a))
Let x € X then since f is onto there exists a € R such that f(a) = x
= f(a) € X = a € f74X) then x = f(a) € f(f1(X))

= X C f(f7Y(X)) (10.3.1(b))
On using (10.3.1(a)) and (10.3.1(b)) we get X = f(f~1(X)), where f~}(X) =
Aisanideal in R. We shall show that N C A, where A={z € R: f(x) € X}
Let z € N then f(z) =0 (. X is an ideal of S = 0 € X)
= f(z) e X = x € fY(X) =z € A Therefore N C A
oo for every X € S 3 A = f7YX) € R such that F(A) = f(A) =
f(f71(X)) = X. Hence F is onto.
F is one-one: Let F(A) = F(B), where A, B are in R ie., A and B are
the ideals of R containing N.
P(A) = F(B) = [(A) = f(B)
we shall show that f~1(f(A4)) = A
Let a€e A= f(a) € f(A) = a <€ fH(f(4))

= AC f(f(A) (10.3.1(c))

Let z € f7(f(A)) = f(z) € f(A)

= f(z) = f(a), for some a € A

=x—aeN=kerf but NCA

=x—a€ A
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=z€A
= [Yf(A) CA (10.3.1(d))
On using (10.3.1(c)) and (10.3.1(d)), we get A = f~1(f(A)).
Similarly f~'(f(B)) = B
L FA) = F(B) = FUF(A) = FHA(B))
= A = B. Therefore F' is one-one.

= J a one-one correspondence between the ideals of R containing N and
ideal of S'.
Let A and B be an ideals in R such that A C B ie, AC B, but A# B
= f(A) C f(B), because if f(a) € f(A), wherea € Aand AC B=a€B
= fla) € f(B) = f(4) C f(B)
if f(A) = f(B) then f~1(f(A)) = f~'(f(B)) = A = B which is not true.
Therefore f(A) C f(B)
Conversely let f(A) C f(B)

= f(4) € f(B)

 FUf(A) C FUA(B) = AC B,
Also A # B for if A = B then f(A) = f(B) which is not true. Therefore
A#B ie, ACB.
10.3.2 Theorem : If K is an ideal in a ring R then each ideal (right or
left ideal) in R/K is of the form A/K where A is an ideal (right or left ideal)
in R containing K.
Proof. Consider the canonical homomorphism f : R — R/K which is an
onto homomorphism. Then by the correspondence theorem any ideal in R/ K
is of the form f(A), where A is any ideal containing kerf = K then K is an
ideal of A (A is an ideal of R and K is an ideal of R = K C A)
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and f(A)={f(z):ze€ A} ={as+ K:2x € A} = A/K.
= any ideal in R/K is of the form A/K where A is an ideal containing K.
10.3.3 Definition : Let R and S be rings. A mapping f: R — S is an
anti-homomorphism if f(z +vy) = f(z) + f(y) and f(zy) = f(y)f(x) for all
z, y € R. An anti-homomorphism which is both 1 — 1 and onto is called an
anti-isomorphism.
10.3.4 Example : Let R = (R,+,.) be a ring. Define a binary operation
oin Raszoy = yx forall x, y € R then prove that (R, +,0) is a ring.
Sol. (R,+) is an abelian group
Let z,ye R=yx €R (" (R,+,.) is a ring)
=z0y€ER

Consider z o (y 0 z) =z 0 (2y)

= (2y)z

— 2(yw)

=z(z 0y)

=(z oy)o z
Alsoz oly+z)=(roy)+(roz)and (y+z)ox=(yox)+(z0x)
Therefore (R, +,0) is a ring.
10.3.5 Definition : Let (R,+,.) be a ring then the opposite ring of R
written R°P) is defined to be the ring (R,+,0) where x 0o y = y.x for all
z,y € R.
10.3.6 Example : Prove that the homomorphism from the ring of integers
Z to Z are the identity and zero mappings only.
Sol. If f is a zero mapping then f is a homomorphism,

since f(a+b)=0=04+0= f(a)+ f(b) V a, beZ
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and f(ab) =0= f(a)f(b) V a, beZ
If f is a non zero homomorphism then consider
(f(1))* = f)f(1) = f(1.1) = f(1) and f(1) #0
because if f(1) = 0 for any x € Z, we have
flz)=f(lx)=f(1)f(z) =0f(x) =0 = f =0 which is not true.
“ F(1) £0 and F(1Y = F(1).
i.e. f(1)is a non zero idempotent element in f(Z) C Z.
But the only nonzero idempotent element in Z is 1 = f(1) =1
Now consider f(n) =(1+1+1+...41) (n times if n > 0)
=f()+f()+...4+ f(1) (n times)
=nifn>0 (- f()=1)
Also f(n) =01if n =0.
If n <0 then
f)=(-1—-1-1—...—1)
f(=1)+ f(=1)+...+ f(=1) (n times)
=(-D+(-1)+(-1)+...4+(=1) (n times)

=-nifn<0

. f(n) =nV ne Z. Therefore f is identity mapping.

10.3.7 Example : Let A and B be ideals in R such that B C A then prove
that R/A ~ (R/B)/(A/B).
Sol. Define a mapping f : R/B — R/Aby flx4+ B)=xz+A V x€R
then f is well defined if 21+ B = 29+ B thenxi—22+B=B=11—1, € B
But BCA=ux —2€ A

=1 -2+ A=A

=1 +A=2,+A
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= f(x1+ B) = f(z2+ B)
We shall show that f is an onto homomorphism
Consider f((z1+ B) + (z2+ B)) = f(x1 + 22 + B)
=r+as+ A
= (21 4+ A) + (22 + A)
= f(z1+ B) + f(z2 + B)
Also  f((z1+ B).(x2 + B))= f(z122 + B)
=x1x1 + A
=(x1 + A)(xe + A)
=f(z1+ B)f(z2 + B)
.. [ is a homomorphism.
f is onto: Since for every x + A € R/A, we have x € R such that
flx+B)=az+A
= [ is onto.
Now kerf ={xr+ B € R/B: f(x+ B) =0}
={r+B:x+ A=A}
={z+B:xe€ A} =A/B
Then by first isomorphism theorem we get, (R/B)/(A/B) ~ R/A.
10.3.8 Example : Prove that any ring R can be embedded in a ring S
with unity.
Sol. Let S be the cartesian product of R and the set of integers Z
ie, S=Rx Z.
Define the binary operations + and . in S by (a,m) + (b,n) = (a +b,m +n)
and (a,m).(b,n) = (ab+ na + mb, mn), where a, b€ Rand m, n€ Z

Consider (a,m) — (b,n) = (a —b,m —n), where,a—b&€ Rand m—n € Z
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.. S is an abelian group under addition and also
(a,m).(b,n) = (ab+ na+mb,mn) € Rx Z (. ab+na+mb € R and
mn € Z, whereab€ R,na=a+...+a€ R, mb=b+...+b€R)
Therefore S is a ring.
The unity is given by (0, 1), because (a,m).(0,1) = (0+1la+0,ml) = (a,m)
Similarly (0,1).(a,m) = (0 + 0+ a, m)=(a,m)
Define a mapping f : R — S by f(a) = (a,0) V a € R then f is a homo-
morphism.
Consider f(a+b) = (a +b,0)

=(a,0) + (b,0)

=f(a)+ f(b) V a, bER

f(ab) = (ab,0) = (a,0)(b,0)=f(a)f(b) VY a, bE R
f is one-one: Let f(a) = f(b) = (a,0) = (b,0) = a =10
Therefore f is an embedding ring of R into S.
10.3.9 Example : Find all ideals of Z/(10).
Sol. Z/(10) ={0,1,2,3,4,5,6,7,8,9}
(0) and Z/(10) are trivial ideals.

10.3.10 Example : Let R be a ring then prove that (R,)? ~ (R%),
Sol. Define a mapping f : (R,)? — (R?), by f(A) = t4, the transpose
of A. Recall that as sets R = R°? and R,, = (R,,)° then by the definition of
the transpose of a matrix ta1p =ta +tp so f(A+ B) = f(A)+ f(B).
We now show that f(A o B) = f(A)f(B), where the multiplication of ma-
trices f(A) and f(B) is in the ring (R?),
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Assume A = (a;;), B = (bi;)
f(A) =ts = (a;;) and f(B) =tp = (b;;) then
a;j = aj; and b;]- =bj forall1 <i,j<n
Now f(A o B) = f(BA) =tpa
The (i,j) entry of tpa is the (j,7) entry of BA which is given by

n

D biari =Y ari 0 by =Y ay 0by=(i,j) entry of tatp € (R7),
P P k=1

Hence tgps = tatp
- f(Ao B) = f(A)f(B)

f is one-one: If f(A) = f(B) = ta =tp = A= B. Also f is onto.
Hence (R,)? ~ (R?),,
10.4 Summary

In this lesson we have defined homomorphism of rings. Also we have
observed that the kernel of homomorphism is {0} if and only if it is one-one.
Further we have proved fundamental theorem of homomorphism and corre-
spondence theorem.
10.5 Model Examination Questions
(1) Show that any nonzero homomorphism of a field F' into a ring R is
one-one.
(2) Let f: F — F be anonzero homomorphism of a field F into itself then
show that f need not be onto.
(3) Let R be a ring. Show that R is anti-isomorphic to R.
10.6 Glossary
homomorphism of rings, isomorphism of rings, correspondence theorem, anti

homomorphism of rings.
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LESSON-11

Sum and Direct Sum of Ideals

11.1 Introduction : In this lesson, we study sum and direct sum of ideals.
11.2 Definition : Let A, Ay, ..., A, be a family of right ideals in a ring
R. Then the smallest right ideal of R containing each A;, 1 <i<n
(i.e., the intersection of all right ideals in R containing each A;) is called the
sum of Ay, As, ..., A, and is denoted by A; + Ay + ...+ A,,.
11.3 Theorem : If A;, Ay, ..., A, are right ideals in a ring R, then
S={ag+a+...+a,/a; € A;; 1 < i < n} is the sum of right ideals
Ay, Aoy A
Proof. Let S ={a;+as+...+a,/a; € A;, 1 <i<n}.
To prove that S is an ideal in R
Letx, ye Sandr € R, thenx =ay;+as+...+a, andy=b;+bs+...+b,
where a;, b; € A;, 1 <i1<n
Nowz —y=(ay+as+...+a,) — (b1 +ba+...+0b,)
=(ay — b))+ (aa—bo)+ ...+ (an—0b,) €5

= x—y € S. (since A4; isanideal, a;, b; € A; = a;—b; € A;, 1 <i<mn)

Also ar=(a1+as+...+a,)r =ar + aor + ...+ apr
=ar €S (since a;r € A; for 1 <i<n)

Thus S is a right ideal of R.
If a; € A; then a; can be written as a; = a; +0+...+0 and by the definition
of Swegeta, €S = A CS.
Similarly As, Az, ..., A, are contained in S.
Let T be any right ideal of R contained each A; then ay,as,...,a, € T
= a+ay+...+a, €T (since T is an ideal). Therefore S C T

.. S is the smallest right ideal of R containing each A;. i.e., S is the inter-
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section of all the right ideal in R containing each A;. Therefore S is the sum
of the right ideals Ay, As, ..., A,.

11.4 Note : The sum of right (left) ideals Aj, As,..., A, in a ring R is
denoted by A; + As +...+ A, = Xn:AZ

=1

11.5 Definition : A sum A = > A; of right (left) ideal in R is called
i=1
a direct sum if each element a € A is uniquely expressible in the from

n n
> a;, where a; € A;; 1 < ¢ < n. If the sum A = Y A; is a direct sum
i=1 i=1

we writeitas A=A @A d...0 A, =) A
i=1
11.6 Theorem : Let Ay, Ay, ..., A, be right ( left) ideals in a ring R then

the following are equivalent

(i) A=) A;is a direct sum.
i=1

(i) If0= Zn:lai, a; € A; then a; =0, fori=1,2,...,n.
(i) ANS A =(0),i=1,2....n
o
Proof. (i) = (ii)
Assume that (i) is true. Suppose i a; = 0 and since A is direct sum of
Ay, Ay, ..o Ay, each element of A hla:sla unique representation
we have 0 € Aand 0=04+0+4+...+0
cap+a+...+a,=0=04+04+...+0
=a;=ay=...=a, =0. Thus Zn:ai:() = a;=0,fori=1,2,... n
(i) = (iid) .
Assume that (ii) is ture. Let z € A; N i Aj then z € A; and z € i A;
= =
Zr=a1ta+...+ta-1+a1+...+a,

=0=a1+a+...+a; 1+ (—2)+ai1+...+a,
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from (ii) we get each a; =0, for j=1,2,...,n, j#iand -2 =0 = =0

j=1
J#i
(iii)) = (i)
n
Assume that (iii) is ture. Let a € A = )  A; and assume that a has two
i=1
representations say a = a; +as + ...+ a, and a = by + by + ... + b, where

a;, b € A;jfor 1 <i<n

= (a1 +as+...+a,) — (b +ba+ .. +b) 0

:>(a1—b1)+(a2—b2)+ (Cln—b)
:>a1—b1:—(a2—b2)— (an—b)
Now A; is an ideal of R, we have a; — b; € A; and
—(ag —by) — ... —(an—bp) €E Ay + A3+ ...+ An=>_ A;
7j=2

=a;— b EAlﬁZA],but by (iii) we have A; HZA = (0)

Jj= j=1

JF#i

Therefore a; — by =0 = a; = by. Similarly we get as = by, ..., a, = b,.

Hence each a € A = ) A; has a unique representation. .". A is a direct sum.
i=1

11.7 Theorem : Let Ry, R, ..., R, be a family of rings and let R = R; x

Ry x ... X R, be their direct product. Let Rf = {(0,...,0,a;0,...,0)/a; €

R;} then R = &) R! is a direct sum of ideals R} and R} ~ R; as rings.
i=1

On the other hand if R = & i A;, a direct sum of ideal of R then R ~
Ap x Ay x ... x A, the direct p;"zlduct of the A;’s considered as rings on their
own right.

Proof. Clearly R;’s are idealsin R and R = R + R5+ ...+ R}.

We prove that R is a direct sum of ideals R}

Let x € R*ﬂz R thenx = (0,0,...,a;,0,...,0) = (a1,ag,...,a;-1,0,ai11, . ..

J#l
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n

= a; = 0 and hence z = 0. Therefore R =& ) R}

i=1
For the second part we note that, if z € R then z can be uniquely expressed
asa;+as+...+a, a; € A4;, 1<i<n.

Define a mapping f: ® > A; = Ay x Ay X ... x A, by

=1
n

flag+as+...+a,) = (a1, as,...,a,), fis well defined since Z A; is direct
sum. It is also clear that f is both one-one and onto. -

f is homo : Let z, y € ,iAi then x = a; +as + ... +a, and y =
by + by + ... + b,, where ai,Z:bli € A;, 1 < i < n, it is easy to see that
fl@x+y) = flz)+ fy).

Now to show that f(zy) = f(z)f(y), since a;, b; € A;; 1 < i < n then for
i # j, a;b; =0 and a;b; € A; N A; = (0). Therefore f is isomorphism.

11.8 Note : The direct sum R = & i A; is also called the (internal) direct
sum of ideals Aq, Ay, ..., A, in R andl?llqe direct product A; X Ay X ... x A,
is called the (external) direct sum of the family of ideals Ay, As, ..., A,.
11.9 Definition : A right (left) ideal I in a range R is called minimal if
(i) I # (0) and

(ii) If J is a non-zero right (left) ideal of R contained in [ then J = I.
11.10 Example : If R is a divison ring then R itself is a minimal right

ideal as well as minimal left ideal.

11.11 Example : For any two ideals A and B in a ring R then

(i) 42~ A

B~ AnB
.\ A+B ., A+B . A+B ., B A
(i) 455 = S5 X 5> =2 475 X 7B

Sol. (i) Let A and B be two ideals in a ring R then
A+ B={a;+b;:a; € Ab; € B} and A+ B is an ideal in R.
Let x = a; + by and y = as + by be any two elements of A + B then
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r—y=(a1+b)— (ag+by) = a1 + (b1 — az) — by
= (a1 —ag)+(by—by) € A+B (' A B are ideals)
Also rz =r(a; + b)) =ray +rby € A+ B, forany r € R
Similarly zr = (a; + by)r € A+ B.
Therefore A + B is an ideal in R and also AN B is an ideal in R.
Since B is an ideal of R such that BC A+ B = Bisanideal of A+ B

A+B
=~ 7B

is a Quotient ring.

Define f: A — 48 by f(a) =a+ B V a € A then f is a onto homomor-
phism

f is homomorphism : f(a; +a2) = (a1 +as) + B = (a1 + B) + (as + B) =
flar) + f(az) and f(araz) = a1a2 + B = (a1 + B)(az + B) = f(a1) f(az).
fis onto: Let z + B € MTB, where x =a; +b; € A+ B

consider f(a;) =a;+ B =a;+b+ B=x+ B (since b + B = B).
Therefore f is onto.

Now ker f={a € A; f(a)

0} ={a € A;a+ B = B}
={a€Ajae B} =ANB.

Then by first Isomorphism theorem we get ﬁ ~ AJFTB :

(i) To prove that 418 ~ ALE » ALB ~ B _A_
Let g : A+ B — 448 x 4B defined by g(z) = (z + A,z + B), where

A
rzec A+ B.

g is homomorphism: For any x, y € A+ B, we have
grx+y)=(x+y+Azrz+y+B)=@+A+y+Axz+B+y+ B)
=@ +Ax+B)+(y+Ay+B)=gx)+g9y)
glay) = (ry + A,zy + B) = (¢ + A)(y + A), ( + B)(y + B))
=(@+Az+B)y+Ay+B)=glx)gy)
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Therefore g is homomorphism.
g is onto: Let (z+ A,y + B) € H8 x 418 where z, y € A+ B such that
r=a,+b,y=as+by, ay, ap € Aand by, by € B.
Therefore (xr + A,y + B) = (a1 + by + A,as + by + B) = (by + A, as + B)
Now as + by € A+ B be such that g(as +by) = (ag + b1 + A,as + by + B) =
(by+A,as+ B) = (z+ A,y + B).
For any (z+ A,y + B) € 448 x 2485 there exists as + by € A+ B such that
glas + b)) = (x + A,y + B). Therefore g is onto.
Now  kerg={z € A+ B/g(x) = (A,B)}
={re A+ B/(z+ A,x+ B)= (A, B)}
={reA+B/x+A=Aand v+ B = B}
={reA+B/reAandx e B} =ANDB
Hence g is homomorphism from A + B onto 4&E x MTB with kernel AN B,

A

then by first isomorphism theorem we get

A+BNA+BXA+B
ANnB A B

(18.11.1)

From (i), we have 458 ~ B and 448 ~ _A_ then the equation (18.11.1)
becomes
A+B B A

ANB AﬂB ADB
If R= A+ B then we have

12
| 5
X
o =
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11.12 Summary

In this lesson we defined external direct product and also established
equivalent conditions which determines the external direct product.
11.13 Glossary

Direct sum, External direct product.
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LESSON-12

MAXIMAL,PRIME AND NILPOTENT
IDEALS

12.1 Introduction : In this lesson we study and characterise maxi-
mal,prime ideals and simple rings.Further we introduced the notions of nilpo-
tent and nil ideals. Moreover using Zorn’s lemma, we prove an existence
theorem for maximal ideal.

12.2 Co-maximal Ideal

12.2.1 Definition : Two ideals A, B in any ring R are called co-maximal
if A+ B=R.

12.2.2 Example : If A = (p]') and B = (p5?) are ideals in Z generated
by pi* and p3? respectively, where py, ps are distinct primes and e, ey are
positive integers then A+ B = Z. Hence A, B are co-maximal ideals in Z.
12.3 Maximal Ideal

12.3.1 Definition : An ideal A in a ring R is called maximal ideal if (i)
A # R and (ii) For any ideal B O A either B=Aor B=R

i.e., Anideal A in a ring R is called a maximal ideal if A # R and if for any
ideal B in R such that A C B C R then either B = A or B = R.

12.3.2 Theorem : An ideal A in a ring R is maximal ideal if and only if
for all ideals X ¢ A. the pair X, A is co-maximal.

Proof. Let A be a maximal ideal of R. Let X be any ideal in R.

If X C Athen X + A = A and the pair X, A is not co-maximal.

Suppose X ¢ A then X + A is an ideal in Rand A C X + A C R.

Since A is maximal ideal we get X + A=A or X + A= R.

Since X ¢ A we get X + A = R. Therefore X, A are co-maximal.
Conversely assume that X, A are co-maximal for all X ¢ A then X+ A = R.
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Let B be any ideal in R such that AC B C R

we have either B = A or B = R.

If B# Athen B¢ Aand B+ A= B, since A C B.

But we have B+ A= R as B, A are co-maximal.

Therefore B = R. Hence A is maximal ideal.

12.3.3 Theorem : For any ring R and any ideals A # R. The following
are equivalent.

(i) A is maximal.

(ii) The quotient ring R/A has no nontrivial ideals.

(iii) For any element x € R, v ¢ A, A+ (z) = R.

Proof. Suppose A is an ideal in a ring R and A # R.

()= (i)

Assume that (i) is true. We know that the ideals of R/A are of the from
B/A, where B is an ideal in R containing A. Thus we have A C B C R.
Since A is maximal ideal we have A = B or B = R.

Therefore B/A is either A or R/A.

If B/A is non zero then B# A ie., ACBand B# A= B=R,

since A is maximal ideal then B/A=R/A.

Hence R/A has only two ideals, they are zero ideal and R/A itself.
(ii) = (i)

Assume that(ii) is true. Let R/A has no non trivial ideals . Let x € R and
x ¢ Athen A+ (x) # A and A+ (x) is an ideal of R properly containing A.
x)/A is an ideal of R/A and it is non zero ideal in R/A.

= A+ (x)/A=R/A (by (ii))

= A+ (z)=R

Therefore, A +

(
)
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(ii))= (i)
Assume that (iii) is true. We have for any x € R, x ¢ A, A+ () =R
Let us assume that A C B C R.
If B = A then A is maximal ideal and there is nothing to prove.
If B # A, choose an element z € B, v ¢ A then A+ () =R (by(iii)).
Also since A C B, x € B, where B is an ideal

= A+ (z)CB

= R C B and we have B C R. Hence B = R.
Therefore A is maximal ideal.
12.4 Simple Ring
12.4.1 Definition : A ring R is called a simple ring if the only ideals of
R are the zero ideal and R itself ( i.e., R has no nontrivial ideals.)
12.4.2 Example : (i) Every field is a simple ring.
(ii) A commutative simple ring with unity must be a field.
12.4.3 Theorem : In a non-zero commutative ring with unity then an
ideal M is maximal ideal if and only if R/M is a field.
i.e., Let R be a commutative ring with unity then an ideal M in R is maximal
ideal if and only if R/M is a field.
Proof. Let R be a non-zero commutative ring with unity then for any ideal
M in R we have R/M is a commutative ring with unity,
where R/M = R={a+ M|a € R} = {dla € R} and 1 =1+ M.
Let M be maximal ideal then by previous theorem R/M has no non-trivial
ideal = R/M is simple ring.
Let @ be any nonzero element in R = R/M then @R is a nonzero ideal in R.

Since R has no non-trivial ideals we get @R = R.  (aR is an ideal of R and
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aR is an ideal of R)

Now 1 € R = aR there exists b € R such that ab =1

Since R is commutative we have ba = 1 = @b

Thus every nonzero element of R is invertible in R. Hence R is a field.
Conversely assume that R is a field then R is a simple ring.

To prove that M is maximal ideal.

Let K be any ideal in R such that M C K C R.

If K = M then there is nothing to prove.

If K # M then K/M is an ideal in R = R/M.

But R has only trivial ideal and K/M is non zero ideal of R/M.

Therefore K/M = R/M = K = R = M is maximal ideal in R.

12.4.4 Example : An ideal M in the ring if integer Z is a maximal ideal
if and only if M = (p), where p is some prime number.

Sol. We know that Z is Principal ideal ring then every ideal M in Z is
of the form (n), for any integer n. Further (n) = (—n). Therefore, we may
assume that n is non negative integer.

Suppose M = (n) is a maximal ideal in Z then Z/(n) is a field.

To prove that n is prime number.

Assume that n is a composite number.

Let n = ningy, where n; > 1,19 > 1 and ny < n, ny <n then

n=mng="n; ny =0 (since i = 0 is zero in Z/(n))

= Ty, Ty are zero divisors in Z/(n), where ny # 0 , iy # 0

which is a contradiction to Z/(n) is a field. Therefore n is a prime number
Conversely assume that M = (p) is an ideal in Z, where p is prime number,

then Z/(p) = Z, ={0,1,2,...,p — 1} is a commutative ring with unity.
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Let a € Z/(p) and @ # 0 then a is not multiple of p = p does not divides

a i.e., (p,a) =1 and there exist x,y € Z such that ax 4+ py = 1

= ar =1 (since p = 0)
= @ is invertible in Z/(p). Thus every non zero element in Z/(p) is invertible.
Hence Z/(p) is a field. Thereofere M = (p) is a maximal ideal.
12.4.5 Example : If R is the ring of 2 x 2 matrices over a field F' of the

a b 0 b
be F}is

form , where a, b € F' then the set M =
00 00
F F
a,be F is a ring, where F'is a field.
0 0

a maximal ideal in R.

a b
Sol. R:{
0

is an ideal of R.

S
M
B!
——
I
e}
S

F 0
a€F )= then S is a subring of R.
0 0

Let f: S — F defined by f( ( ) = a then f is homomorphism,
e

::D\_/

one-one and onto = S « F. Sinc eld then S is also field.

a
0
F
a b a 0
Further g : R — S defined by ¢ = then g is onto
0 0 0

a b 00
g —=
0 0 0 0
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a b
k:erg:{ €ER
0 0




0 b
00
Then by the fundamental theorem of homomorphism we get R/M = S. Since

S is a field then R/M is field. Hence M is a maximal ideal in R.
12.5 Product of Ideals

bEF}:M.

12.5.1 Definition : Let A and B be right (left) ideals in a ring R then
the set

{ Z aibi‘aieA, bIGB}

finite sum
which is a right (left) ideal in R is called the product of A and B and written
as AB.
12.5.2 Note : (i) If A and B are right ideals in R. then their product
AB is a right ideal in R.
(ii) If A and B are ideals in R then AN B is also an ideal in R.
12.5.3 Theorem : LetA, B and C be right (left) ideals in a ring R then
(i) (AB)C = A(BC)
(ii) A(B+C)= AB+ AC and (B+ C)A=BA+ CA.
Proof.(i) Follows from the associativity of multiplication in R.
(ii) Clearly AB, AC C A(B+ C).
Alsoifae A, be B, ce C then a(b+c¢) =ab+ac e AB + AC
Hence AB + AC = A(B+ ().
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12.5.4 Definition : If Aj, Ay, ..., A, are right ( left) ideals in a ring R
then their product is denoted by A1 A, ... A, and defined as

AlAQAn:{ Z ajas ... ay

finite sum

a; € A;, z:l,Q,n}

12.5.5 Definition : If A; = A, = ... = A, then their product is A™.
12.5.6 Note : (i) If p is prime number and p/ab then p/a or p/b.
(ii) If ab € (p) then a € (p) or b € (P).
Equivalently if (a)(b) C (ab) C (p) then (a) C (p) or (b) C (p).
12.6 Prime Ideal
12.6.1 Definition : An ideal P in a ring R is called a prime ideal if P # R
and has the following property.
If A and B are ideals in R such that AB C P then either A C P or B C P.
12.6.2 Theorem : If R is a ring with unity then each maximal ideal is
prime ideal.
Proof. Let M be any maximal ideal in R.
Let A, B are two ideals in R such that AB C M.
If AC M then M is a prime ideal.
Suppose A ¢ M then 3 an element a € A and a ¢ M = M + (a) = R.
Buta€ A= (a) CA (.~ Ais an ideal )

=M+ () CM+A

= RC M+ A, but M + A C R always. Therefore M + A =R
Sincele R=1eM+A=1=m+a, forsomea€ce A, me M
(since A ¢ M then A, M are co maximal ideals and A+ M = R)
Let b € B then b=mb+abe M (since m € M and M is ideal = mb e M
and ab€ ABC M = abe M = mb+abe M)
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= be M.

= B C M. Hence M is a prime ideal in R.
12.6.3 Note : The converse of the above theorem is not true in general.
12.6.4 Example : The ideal (0) in the ring of integers Z is prime ideal
but not maximal ideal.
Sol. Leta, be Zandabe (0) =ab=0=a=00rb=0
= (a) = (0) or (b) = (0) = (0) is a prime ideal but not maximal ideal,
since (0) C (z) C Z for any x € Z where = # 0.
For example (0) C (2) C Z.
12.6.5 Theorem : If R is a commutative ring then prove that an ideal P
in R is prime ideal iff abe P, a€ R, be R= a€ P or be P.
Proof. We have R is a commutative ring and P is an ideal in R, P # R.
Suppose P is a prime ideal in R ( i.e., P # R) and if A, B are ideals in R
such that AB C P then A C P or B C P. Let ab € P, where a, b € R.
Since R is a commutative ring, we have (a) = {na + ar/n € Z, r € R}
(b) = {mb+bs/m € Z, s € R}
Now (a)(b) = {fmuze:sum xy‘x € (a), y € (b)}
The element zy = (na + ar)(mb + bs)

= nmab + nabs + mabr + abrs

Since P is prime ideal and ab € P and r, s € R
=axy € P (The finite sum of such element also belongs to P)
(a)(b) CP = (a) CPor (b) CP ( P is prime ideal)

=a€ PorbeP (since ab € P and P is an ideal R we get
(na + ar)(mb + bs) or finite sum of such products are in P)

Conversely assume that ab e P, a, be R=a€ Porbe P
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Let A and B be ideals in R such that AB C P.

If A C P then P is prime ideal.

Suppose A ¢ P, there exists an element a € A such that a ¢ P then for each
be B, we haveabe ABC P=abe P V be B

But by our hypothesis b € P (since a ¢ P)

= BCP (abe P=a€porbe P)

Thus ABCP= ACPor BCP.

Hence P is a prime ideal.

12.6.6 Example : In an integral domain R prove that the ideal {0} is
prime ideal.

Sol. Let R be an integral domain

Ifab e (0),a, be Rthenab=0=a=00rb=0 ( R has no zero divisors)
= a € (0) or b € (0). Hence (0) is a prime ideal in R.

12.6.7 Example : A commutative ring R is an integral domain iff (0) is
a prime ideal.

Sol. Let R be a commutative ring.

If R is an integral domain then (0) is a prime ideal.

Suppose (0) is a prime ideal.

Thus if ab € (0), a, b € R then either a € (0) or b € (0)
sab=0=a=00rb=0

= R has no zero divisors. Hence R is an integral domain.

12.6.8 Example : For each prime integer p prove that the ideal (p) in the
ring of integers Z is prime ideal.

Sol. Fora, b€ Z, Let ab € (p) then p/ab = p/a or p/b

= a € (p) or b € (p). Hence (p) is a prime ideal.
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12.6.9 Theorem : Let R be a commutative principle ideal domain with
unity then prove that any non zero ideal P # R is prime ideal iff P is a
maximal ideal.
Proof. Let R be commutative principal ideal domain with unity.
Let P # R be any nonzero prime ideal in R and ab€ P = a € Por b € P.
Suppose P is not maximal ideal then there exists an ideal M in R such that
PCMCR= P#M and M # R. Since R is a principal ideal domain we
have M = bR for some b € R and P = aR, a € R.
Thus aR C bR and aR # bR
This implies a € P and a = bx for some = € R and b ¢ P = aR.
Since P is a prime ideal, a =br € P,b¢ P =z € P
Then x = ay for some y € R
Now a = bx = bay = a(l —by) =0
Since a # 0 and R is principal ideal domain we get 1 — by = 0

=1=byec M =0>bR

=1leM

= M = R which is a contradiction. Hence P is a maximal ideal.

OR

Let R be a commutative principal ideal domain with unity.
Let P # R be any nonzero prime ideal of R then P = (a) for some a € R
= P =aR (P = (a) ={ar/r € R} = aR)
If possible, let P be not maximal ideal then there exists an ideal M such
that PC M CR= M%#Pand M # R
Since M is a principal ideal then M = aR, for some b € R, where bR # aR
and bR # R.
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PCM=aRCDR
= a € bR
= a = bz, for some r € R
Also bR ¢ aR (If bR C aR and aR C bR = aR = bR)
=b¢ aR.
But aR = P is a prime ideal and
a€e P=breP
=zeP (b ¢ aP = P)
= r =ay, forsomeyéc R (P =aR)
= = = bay = aby
=a(l—by)=0

=1-by=0 (a #0)
=by=1 (R is integral domain)
=1leM

= M = R which is a contradiction to M # R

= P is a maximal ideal.
Conversely let P be a maximal then P is prime ideal (by previous theorem).
12.6.10 Example : Let R be a commutative ring with unity in which each
ideal is prime ideal then prove that R is a field.
Proof. Suppose R is a commutative ring with unity in which each ideal is a
prime ideal. In particular (0) is a prime ideal in R.
Let a, b€ Rand ab=0 = ab € (0) = a € (0) or b € (0)
.". R has nonzero divisors and so R is an integral domain.

Let a € R and a # 0 then
(a)(a)={ > mara/ri,rs€ R} ={r?a®/ re R} = (a?

finitesum
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But (a?) is a prime ideal, therefore (a) C (a?). It is easy to see that (a?) C (a)
Thus we get (a) = (a?) = a € (a?)

= a = a’x, for some v € R

= a(l —azx) =0

= 1—-ar=0 (since a # 0, R is an integral domain)

= ar =1

= a has an inverse in R.
Thus every non zero element of R is invertible in R, Hence R is a field
12.6.11 Example : Let R be a Boolean ring then prove that each prime
ideal P # R is maximal ideal.
Proof. Suppose R is a Boolean ring then 2> =z V x € R and R is com-
mutative ring. Let P # R be a prime ideal in R
Consider the quotient ring R/P then R/P is also commutative.
We first show that R/P is an integral domain.
Let a, b € R. Since P is prime ideal we have abe P = a € Por b € P.
Thus if ab=0thenab=0=a=0o0orb=0
(sincea€ Porbe P=a+P=Porb+P=P=a=0orb=0)
where z=x+ P € R/Pand 0 =0+ P = P.
Therefore R/ P has no zero divisors. Hence R/P is an integral domain.
For all x € R, we have

)=+ P)z+P)=2>+P=a+P=1 (2*=02)

.. R/P is a Boolean ring.
But every integral domain has only idempotent element 0 and possibly 1
.. R/P ={0} or R/P={0,1}
If R/P={0} = R = P which is not true (since P # R)
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. R/P={0,1} is finite integral domain
= R/P is field. Hence P is maximal ideal.
(OR)
Consider R/P where P is a prime ideal and P # R
Thenabe P=ac Porbe P
ie, ab+P=P=a+P=Porb+P=P
=ab=0=a=0o0rb=0
R/P is an integral domain
Also for all x € R we have
(x+P)y?*=(x+P)(z+P)=2>+P=x2+P Vz€R since (2°=x)
s (z+P)y*=(x+P)forallz+ P € R/P
= R/P is a Boolean ring and also an integral domain.
We know that an integral domain has no idempotent element except zero
and possibly unity.
R/P = {0} or R/P = {0,1}
(In an integral domain 2? =2 = z(1—2)=0=z=0o0rz =1)
If R/P = {0} = R = P which is a contradiction to P # R
. R/P = {0,1} is finite integral domain
.. R/P is field = P is maximal ideal.
12.6.12 Example : Let a be a non nilpotent element in a ring and let
S ={a,a? a3, ...}. Suppose P is maximal ideal in the family F of all ideals
in R that are disjoint from S then P is a prime ideal.
(Note that the statement dose not say that P is maximal ideal in R precisely,
it means that there does not exist any ideal X € F' such that X D P).
Sol. Let AB C P where A and B are ideals in R.
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If possible let A ¢ P and B¢ Pthen A+ P> Pand B+PDP .

By maximality of P we have (A+ P)NS # ® and (B+ P)NS # P.

Thus there exist positive integers ¢ and j such that a* € A+P and o/ € B+P
then a'a’ € (A+ P)(B+ P) = AB + AP + BP C P because AB C P and
P is an ideal in R. Thus P NS # ® is a contradiction.

Hence AB C P = either A C P or B C P. Therefore P is a prime ideal.
12.6.13 Example: Let R = C[0, 1] be the ring of all real-valued continuous
functions on the closed unit integral. If M is a maximal ideal of R then there
exists a real number v, 0 <~y <1suchthat M =M, ={fe R/ f(y) =0}
and conversely.

Sol. Let M be a maximal ideal of C]0, 1].

We claim that there exist v € [0, 1] such that f(v) =0 for all f € M. Oth-
erwise for each = € [0,1] there exist f, € M such that f,(z) # 0. Because
f= 1s continuous there exists an open integral say I, such that f,(y) # 0 for
all y € I,. Clearly [0,1] = |J .. By the Heine-Borel theorem in analysis
there exists a finite subfamzi%foé]ay I, 1,,,...1,, of this family of open inte-
grals I, x € [0,1] such that [0,1] =1,, Ul,,U...UIl,,

Consider [ = Zn:lﬁ and suppose f(z) = 0 for some z € [0, 1].

Now [0, 1] = Lnj I, implies that there exists I, such that z € I, (1 <k <mn)
then f,, (2) ;é:l() But f(z) =0 = > (fs,(2)? =0 = f,.(2) = 0is a con-
tradiction. Thus f(z) # 0 for any z € [0, 1] which is in turn yields that f is
invertible and M = ([0, 1] which is not true.

Conversely, we show that M., is a maximal ideal of C[0, 1] for any ~ € [0, 1].
It is easy to cheek that M, is an ideal. To see that it is maximal ideal, we

note that C10, 1]/M, is a field isomorphic to R.
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Alternatively, we may proceed as follows
Let J be an ideal of C[0, 1] properly containing M.,
Let g€ J, g ¢& M, then g(vy) # 0.
Let g(v) = «, then h = g — a is such that h(y) =0
ie, h € M, soa =g—h € J. But a # 0 implies that « is invertible.
Consequently J = R which proves the converse.
12.7 Nilpotent Ideal
12.7.1 Definition : A right (left) ideal A in a ring R is called nilpotent
ideal if A™ = (0), for some positive integer n.
12.7.2 Example : (i) In any ring R the zero ideal A = (0) is nilpotent
ideal
(ii) The ideal A = {0, 2} is not zero a ideal in a ring R = Z/ < 4 >, but it is
nilpotent ideal.
Since A2 = A.A = {0,2}{0,2} = {0,0,0,0} = (0) = A% = (0)
0 Z

(iii) The ideal A = is a nilpotent ideal in a ring R =
0 0 0 Z

of 2 x 2 upper triangular matrices. Since A? = A.A = 0yyo = (0).

12.7.3 Note : (i) Every zero ideal is a nilpotent ideal but converse need
not be true.

ii) Every element in a nilpotent ideal is a nilpotent element but converse
need not be true.

(iii) The set of nilpotent elements in ring R is not necessarly form a nilpotent
ideal (this set may not be an ideal).

(iv) A ring R may have nonzero nilpotent element but it may not posses a

nonzero nilpotent ideal.
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12.7.4 Example : Let R = F,, be the ring of n x n matrices over field F
then R has nonzero nilpotent elements such as e;;, i # j, 1 < 1,5 <n.
Sol. Let I be a nilpotent right ideal in R with I* = (0), where k is some

positive integer then consider the ideal

... = - CRI...... = k— .
(BI(RI)....(RI) = R{R)...(IR)I € R]......L I =RI* = (0
k times (k—1) times (k—1) times

Hence RI is a nilpotent ideal in R. But we know that the ring R = F},
has no nontrivial ideal then RI = (0) or RI = R.
Since R has unity # 0 then RI # R. Therefore RI = (0) only.
For any a € I we have a = la € RI = (0) = a = 0. Hence I = (0)
12.8 Nil Ideal
12.8.1 Definition : A right (left) ideal A in a ring R is called a nil ideal
if each element of A is a nilpotent element.
12.8.2 Note : Every nilpotent right (left) ideal is nil ideal but converse is
not true.
12.8.3 Example : Let R =® > Z/(p%), fori =1,2,..., be the direct
sum of the rings Z/(p'), where p is prime number then R contains non zero
nilpotent elements such as (0 + (p),p+ (p*),0+ (p*)...... )
Let I be the set of all nilpotent elements then [ is an ideal in R because R
is commutative, so I is a nil ideal. But I is not nilpotent ideal if I* = (0)
for some positive integers k > 1 then the element
z=(0+(p),0+ (p*),....,0+ ("), p+ (P, 04+ (p*2)...... ) is nilpotent.
So x € I. But 2* # 0 which is a contradiction.
Hence I is not nilpotent ideal.

12.9 Some Basic Definitions
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12.9.1 Definition : ( Partial Order) Let S be a nonempty set. A binary

b

relation on S denotes by < 7 is called a partial order on S if the following
conditions are satisfied for all a, b, c€ S (i) a<a Vae€ S (reflexive)
(i) a<band b<a = a=>b (antisymmetric)

(iii) e <band b<c= a<c (transitive)

12.9.2 Definition : (Poset or Partially Ordered Set) A poset is a
system (S, <) consisting of a nonempty set S and a partial order < on S.
12.9.3 Definition : (Chain) A subset C of S is said to be a chain in a
poset (S, <) if for every a, b € C' we have either a < b or b < a.

12.9.4 Definition : (Upper Bound) An element u € S is said to be
an upper bound of C' if a < u for every a € C.

12.9.5 Definition : (Maximal Element) An element m € S is said to
be a maximal element of poset (S, <) if m <a, a € S then m = a.

We now state Zorn’s lemma without proof. 12.9.6 Definition : (Zorn’s
Lemma) If every chain C in a poset (5, <) has an upper bound in S then
(S, <) has a maximal element.

12.10 Existence of Maximal Ideal

12.10.1 Theorem : If R is a nonzero ring with unity 1 and [ is an ideal
in R such that I # R then there exist a maximal ideal M of R such that
ICM.

Proof. Let R be a ring with unity and I # R is an ideal in R.

Let S be the set of all ideals X # R in R such that [ C X then (5,C) is a
partially ordered set under inclusion

(i) ACAV AeS

(ii) ACBand BC A= A=B
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(i) ACB,BCC=ACC
Let C be only chain in S and U = |J X then I C U and U is an upper
bound of C. e
To prove that U is an ideal : Let a, b € U then there exists ideals A, B
in C such that a € A and b € B. Since C' is chain we have either A C B or
B C A ie., eithera, be Aora, be B

=a—-bceAora—be B (since A, B are ideals)

=a—-belU
Further a € U = a € A, for some A € C

= arandra€ A, V reR

= ar and ra € U

..U is an ideal in R.
If U =Rthen1eU

= 1€ X, for some X € C

= X = R which is a contradiction to X # R. Hence U # R.
HfICX forall XeC = 1CU = U e S and also U is an upper bound
for C'. This shows that the chain C' in a poset (S, C) has an upper bound
in S. Since C is arbitrary, we see that every chain in (S, C) has an upper
bound in S. Therefore by Zorn’s lemma (21.14) we get (.5, C) has a maximal
element say M
ie., M isanidealin R, I C M and M # R.
Let N be an ideal in R such that M C N C R, M # N.
If N#Rthen NS (sincel/ CMCN=1CN)
which is a contradiction to the maximality of M. Hence N = R

Therefore M is a maximal ideal in R.
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12.11 Summary
In this lesson maximal ideals and prime ideals were characterised. More-
over we established an existence theorem for maximal ideals
12.12 Glossary
Maximal Ideal, Prime Ideal, Nilpotent Ideal, Nil Ideal, Poset, Chain, Zorn’s

lemma .
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UNIT-1V
LESSON-13

UNIQUE FACTORISATION DOMAINS

13.1 Introduction: In this lesson we define unique factorisation domain.
Further, we prove that every prime element is irreducible element in an In-
tegral domain.

13.2 Divisiblity:

13.2.1 Definition: Let a and b be two nonzero elements in a commutative
integral domain R with unity. We say that b divides a ( or b is a divisor of
a or a is divisible by b or a is multiple of b) if there exists an element ¢ € R
such that a = be. If b divides a then we write b | a or a =0(modb).

13.2.2 Definition: An element u € R is said to be unit in R if v has a
multiplicative inverse in R i.e., an element v is a unit in R if there exists an
element v € R such that uv = 1.

13.2.3 Definition: Two elements a , b in R are said to be an associates if
there exist an unit v € R such that a = bu.

13.2.4 Theorem: Let R be a commutative integral domain with unity then
(i) an element u € R is a unit if and only if u | 1.

(ii) a,b are associates in R if and only if a | b and b | a.

Proof. (i) If wis a unit in R then u is invertble, there exists v € R 3
wv = 1. Therefore u | 1. Conversely if u is a divisor of 1 then there exists
v € R > 1=wv and hence u is a unit in R.

(ii) If a,b are associates in R then a = bu for some unit v € R. Thus

b | a.If uis a unit in R there exists v € R 3 uv = 1. Now av = buv = b.1 = b.

Therefore b = av = a | b. Conversely, suppose a | b and b | a. If a | b
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= b = ax for some x € R. If b | a = a = by for some y € R. Now
b=ar =byr =bry = b(l —zy) =0 = xy = 1, where a # 0 and b # 0.
Thus = and y are units. Therefore a, b are associates.

13.2.5 Definition: An element b in a commutative integral domain R with
unity is called an improper divisor of an element a in R if b is either a unit
or associate of a.

13.2.6 Theorem: Let R be a commutative integral domain with unity then
(i) b|a if and only if (a) C (b).

(ii) a and b are associates if and only if (a) = (b).

(iii) w is a unit in R if and only if (u) = R.

Proof. (i) Suppose b | a. Then a = br for some r € R. Now z € (a) =
x = as for some s € R. Now z = as = (br)s = b(rs) € (b). Thus (a) C (b).
(ii) a and b are associates <= a |band b|a <= (b) C (a) and (a) C (b)
— (a)=(b)

(i) wis aunitin R <= wuisadivisor of 1 <= (1) C (u) < R C (u)
<= (u) = R (since (u) C R).

13.2.7 Definition: A nonzero element a of an integral domain R with unity
is said to be an irreducible element if (i) a is not a unit and (ii) every divisor
of a is improper, 1i.e., a =bec, b,c € R = either b is a unit or ¢ is unit (i.e.,
the only divisors of a are units and associates).

13.2.8 Definition: A nonzero element p of an integral domain R with unity
is said to be a prime element if (i) a is not unit and (ii)if p | ab, a,b € R,
then either p | a or p | b.

13.2.9 Theorem: Every prime element is an irreducible element in an in-

tegral domain R with unity.
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Proof. Suppose p is a prime element in R. To prove that p is irreducible
element. Let p = bc for some b, ¢ € R.
p=bc=pl=bc=plbc=plborp|c (. pisprime element)
Ifp| b= b= pxforsomez € R. Now p = bc = prc = xc =1= cis a unit.
If p|c= c=pyfor somey € R. Now p=bc="bpy = by =1 = bis a unit.
Therefore p is an irreducible element.
13.2.10 Remark: In an integral domain R with unity, every prime element
is an irreducible element. But an irreducible element need not be prime ele-
ment.
13.3 Principal Ideal Domain:
13.3.1 Defintion: A commutative integral domain R with unity is said to
be principal ideal domain (PID) if each ideal in R is of the form (a) = aR,
a € R.
13.3.2 Theorem: Prove that an irreducible element in a commutative prin-
cipal ideal domain (PID) is always a prime element.
Proof. Let R be a PID and let p € R is an irreducible element. Therefore
p is not a unit. Suppose that p | ab, where a,b € R. To show that either
p|aorp|b Assume that p{a. Consider (p) and (a) are ideals in R then
(p) + (a) is also an ideal in R. Since R is a PID then (p) + (a) is a principal
ideal in R. Therefore (p) + (a) = (c), for some ¢ € R,
pep) C(p)+(a)=(c)=pe (o)

.. p = cd for some d € R.
As p is irreducible, we have either ¢ in a unit or d in a unit.
Assume that d is a unit then p = e¢d = p, ¢ are associates = (p) = (¢) .
But (p) + (a) = (¢) = (p) (A+B=A= BCA)
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= (a) € (p)
a € (a) C (p) = a = pz for some x € R. = p | a which is a contradiction to
d is unit.
Hence ¢ is a unit. (¢) = R.
Now () + (p) = (¢) = (a) + (p) = .
le R=1¢€ (a)+ (p).

= 1 = au + pu, for some uv € R.

= b= b(au + pv) = abu + pbv.. Therefore abu + pbv = b.
But p | ab and p | pb. Therefore p | abu 4+ pbv = b = p | b. Therefore p is an
prime element.
13.4 Unique factorisation domain (UFD)
13.4.1 Definition: A Commutative integral domain R with unity is called
a UFD if
(i) Every nonunit element in R is a finite product of irreducible factors.
(ii) Every irreducible element in R is a prime element.
13.4.2 Theorem: If R is a UFD, then the factorization of any (nonunit)
element in R as a finite product of irreducible factors is unique up to order
and unit factors.
Proof. Let R be a UFD. Let a be a nonunit in R, a # 0.
If a is irreducible, then a = bc = either b or ¢ is a unit.
The theorem is true in case a is irreducible. Suppose a is not irreducible then
a can be written as a finite product of irreducible elements say a = p1ps . .. pp,
where p; are irreducible elements in R.
Let @ = p1p2...Dn = 1¢2 - - - ¢n, Where p;, g; are irreducible (and also prime)

we prove that m = n and each p; is an associate of some ¢;. we prove this
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by using induction on m. If m = 1 then a = p; where p; is irreducible.
Assume by induction hypothesis that the result is true for m — 1 (factors).
Now pip2 ... Pm-1Pm = Q142 - - - Gn—-1qn-
= Pm | 0102 - - - @n (pm is prime).
= D | q; for some j say p., | gk
Qr = U1Pm, Qk is irreducible.
= wu; 1S a unit.

Pip2 - - - Pm—1Pm= 4192 - - - Qk—1U1PmGk+1 - - - Gn-
Then p,'a = p1p2 - Pm—1 = U142G5 - - - Qk—1Gk41 - - - Gn- P 0@ € R.
Therefore By the induction hypothesis, we get m—1=n—1 = m =n and
each p; in a associate of some g;. This complete the proof.
13.4.3 Definition: An element d in an commutative integral domain R with
unity is called a greatest common divisor of a,b € R if
(i) d|a,d|band
(ii) if for c€ R, ¢|a and ¢ | b then ¢ | d.
It is denoted by (a,b) = d.
13.16 Note: (i) If d is a ged of a, b then every associate of d is also a ged.
(ii) If d=(a,b) u € R is a unit, then ud is also ged.
13.5 PROBLEMS ON UNIQUE FACTORIZATION DOMAINS
13.5.1 Problem: Suppose R is commutative integral domain with unity.
Let a,b,c € R Then Prove the following:
(i) c(a,b), (ca,cbh) are associates.
(i) (a,b)=1,a|c,b|c=ab|ec.
(ili) (a,b)=1,b|ac=1b]c.
(iv) (a,b) =1, (a,¢) =1 = (a,bc) = 1.
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Sol. (i) Let (a,b) =d, (ca,ab) = e.
d|a,d|b=cd|ca,cd|ch.
=cd|e.
= e = cdz for some x € R.
el ca,e|chb=cdx|ca.
= ca = cdxy for some y € R.
= a = dzy.
= dz | a. similarly dz | b.
de | a,dx | b= dz | (a,b).
= cdz | ¢(a,b) = cd.
= el cd.
e, cd are associates.
(ca, cb), c(a,b) are associates. .. we can take (ca,cb) = c(a,b).
(ii) Suppose (a,b) =1,a]c,b]ec.
a|c= ab]|bc.
b|c=ab|ac.
ab | ac, ab | be.

c.ab | (ac,be) ab | c(a,b)

coable [0 (a,b) =1]
(iii) Suppose (a,b) = 1.
b|ac, blbe
b (ac,be) = c(a,b) = c.
b

(iv) Let (a,b) =1, (a,¢) =1 and (a, bc) = d.
To prove d = 1.
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(a,bc) =d = d|a,d]|bec
=d|ac, b|bc=d| (ac,bec)
=d|cla,b) =d|c (. (a,b)=1)
dla,d|c=d|(a,c)=1=d=1.
“(a,bc) =1
13.5.2 Problem: Show that 2 + /=5 is irreducible but not a prime in
ZIV75).
Sol.R=Z[vV/=5={a+by=5:a,be Z}={a+b/5i:abe Z}
It is clear that R is commutative integral domain with unity.
Define N : R — Z by N(a) = aa, a € R, where o = a+iv/5b, & = a —i\/5b.
Now aa = a® + 5b*
N(a +iv/5b) = a® + 50 € Z.
For a, 5 € R, we have
(i) N(a) >0, N(a)=0 <= a=0.
(i) N(ag) = N(a)N(8).
(ili) «is aunit <= N(a)=1.
Let oc:a—l—i\/gb, B:c—l—i\/gd
N(a) =a*+50* >0
N(a) =0 <= a*>+5* =0

<~ a=0,0=0

— a=0
N(af) = (ap)(af) = (aa)(8F)
= N(a)N(B)

Suppose « is a unit , then 3 f € R 3> af = 1.
S.N(aB)=N(1)=1
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N(@)N(8) = 1
2. N(«) | 1, N(a) > 0.
N(a) =1.
Suppose N(a)=1=aca=1=>a=a"!
= « 1s a unit
Coaisaunit <= N(a)=1.
We shall now find units of R.
Let a + i1/5b be a unit in R.
Then a? + 50> = 1, a,b € Z.
sb=0anda®>=1ora==1,b=0.
.. units are 1.

We now show that 2 + /=5 is irreducible in R.
Let 2 + /=5 = af for some o, 3 € R.
Let o« = a+ +/=5bb, B =c++/=5d, a,b,c,de Z.
N(aB)=N(2++/=5)=22+5.12=0.
N(a)N(B) =09.
N(a)|9= N(a)=1or 3 or9.
Claim: N(a)=1or N(a) =9

i.e. N(a) # 3.
Suppose if possible N(«a) = 3.

a*>+5¥ =3, abe Z. — (1)
But thus equation has no solution in Z.

2. N(a) #3
. Either N(a) =1or N(a) =9 = N(B8) =1,

= Kither « is a unit or 8 is a unit.
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.24 +/=5 is an irreducible element in R.

3,3€R 3x3=0.

(2+vV=5)(2—+v=5)=09.

S 2++/-5]3X3, 3€R. (2)
Claim: 2+ /=5 | 3. Suppose if possible, 2 + /=51 3.
Then 3a € R >3 =(2++/=5)

. N(3) = N(a)N(2 + v/=5)
9=N(a)x9

. N(a) =1 ais a unit .

o = =£1.

3 = £(2 + +/-5), which is absurd.

. 2++/=513, even though 2 ++/-5=3x3,3 € R.

.24 +/=5 is not a prime.

. Z|v/=5| is not a UFD.
13.5.3 Problem: Show that 3 is irreducible but not a prime in Z[y/—5].
13.5.4 Problem: Find ged of 10+ 114, 8 44 in Z[i], where Z[i] = {a + i :

a,b € Z} is the ring of Gaussian integers.
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LESSON-14

PRINCIPAL IDEAL DOMAIN AND
EUCLIDEAN DOMAIN

14.1 Introduction : In this lesson we define Euclidean domain and also
prove that every ED is a PID but not conversely
14.2 Theorem: Every commutative PID with unity is a UFD, but not
conversely.
Proof.
Suppose R is a PID, R is commutative and 1 € R.
To prove that R is a UFD, we show that
(i) Every irreducible element in R is a prime.
(This one is already proved)

(ii) Every non-unit in R is a finite product of irreducible elements.
To prove (ii), we establish the following.
* R doesn’t contain any infinite ascending chain of ideals.
Suppose A; C Ay C A3 C ... C A, C ... is an ascending chain of ideals in
R.— (1)

R is a PID.
.. Each A; is a principal ideal, say A; = (a;) for some a; € R.

ie. (a1) C(az) C(az) C...(ay,) C....
Consider A= Ej A, = Ej (a;).
Claim: A isn;ll ideal.n:1
Let x,y € A, r € R.
r,ye A=UA, =z € A, ,y € A,, for some ny,n,.
But we have either A4,, C A,, or A,, C A,,.

Sxyy € Ay, or A,
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r—y,rv €A, orA,,.

r—y,rreA

.. Ais an ideal in R.
But then A is a principal ideal. (" R is a PID)
Let A = (a) for some a € R.
a € A=UA,.
= a € A, for some k.
Now a € Ay,
= (a) C Ay
= A C A,
But A, C A..
SA= A
A, =Aform>k.
LA CA L. CA=A=A.... - (1)is a finite ascending chain of ideals.
i.e., There are no infinite ascending chain of ideals in R. This proves .
We now prove (ii).
Let a € R, be a nonzero non unit.
If a is irreducible, then we are done.
So suppose a is not irreducible.
Then a = a1b; for some a1, b; € R such that neither a; nor b; is a unit.
If both aq, by are irreducible then a is a product of two irreducible elements.
So suppose a; is not irreducible, b, is irreducible.
a=ay,by = ac(a)= (a) C(a).
Then a; = aoby where neither ay not by is a unit

a = ay, bl = agbgbl.
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If both as, by are irreducible then a is a product of their irreducible elements.
(a) S (a1) & (a2).
If this process continues indefinitely, we get an infinite ascending chain of
ideals in R, which leads to a contradiction to .
.. The process terminates after a finite number of steps, say k steps.
a = ay, by ...ax, where each q, is irreducible this prove (ii).
We now show that there are UFDs which are not such PIDs.
We know that every field F' is a UFD.
(we prove “R is a UFD = R(x) a UFD” later )
Then Flz] is a UFD. Flz,y] = Flz]F|y| is also a UFD.
Take (x), (y) which are ideals in F[x,y].
() + (y) is an ideal in F[z,y].
Claim: (z)+ (y) is not a principle ideal in F[z, y].
suppose if possible () + (y) is a principle ideal in Flx,y] say (z) + (y) =
(f(x,y)), for some f(z,y) € Flz,y].
v € (z) C Flo,y] = v = f(z,y)c(z,y)
similarly y = f(z,y) d(z,y) for some c(x,y),d(z,y) € Flz,y].
If f(x,y)is a unit then (z) + (y) = Fx, y] which is not true.
Also f(z,y) # 0.
codeg f(z,y) > 1.
z = f(z,y)c(z,y).
= c¢(x,y) =const polynomial=c(say)
degf(z,y) = 1.
Similarly d(z,y) = d (a const p)
L =cf(ey), y = df(z,y).
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cy = dx.
But this is a contradiction to the fact that x,y are two distinct variables.
. (x) + (y) is an ideal in F[z,y] which is not a principal ideal.
. Flz,y] is not a PID even though it is a UFD.
14.3 Euclidean Domain
14.3.1 Definition: Suppose R is a commutative integral domain with unity:.
If there is a function ¢ : R — Z satisfying
(i) a,b€ R—(0), alb= ¢(a) < o(b).
(i) For a,b € R,b # 0 3 q,r € R > a = gb+ r, where either r = 0 or
¢(r) < ¢(b).
Then R is called a Euclidean domain.
14.3.2 Theorem: Every Euclidean is a PID.
Proof. Suppose R is a ED with ¢ : R — (0) — Z.
To prove that R is PID.
Let A be an ideal in R.
If A= (0), then there is nothing to prove.
So suppose A #0. da€ A>a#0.
Consider S = {¢(a):a € Rya# 0} C Z.

lla Ya##0.
2oo(1) < ola).

o(1) € S.

i.e. S(C Z), which is bounded below.
.. By the Well ordering principle, there is a least element in S, say ¢(d).
Then o € A, d # 0, and ¢(d) < ¢(a) forall a # 0 € A.

Claim: A = (d)
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deA=(d)CA——(1)
Let z € A
Srx€E€ERdeR,d#0
s.dgreR>
r=gqd+r,r=0or¢(r) < od).
Suppose if possible 7 # 0. Then ¢(r) < ¢(d).
r€e€A de A, Aideal = x,qd € A.
= x —qd € A.
=reA
Sr#0,re A o(r) < o(d).
o(r) € S and ¢(r) < ¢(d).

But this is a contradiction to the nature of ¢(d).

Sor=0.
r=qd € (d)
Sz e (d)
LACW) ()
(1) and (2) = A = (d), a principal ideal.
.. Ris a PID.

14.3.3 Note: Every ED is a UFD.

ED = PID = UFD.

14.3.4 Example. Z is a ED (and hence Z is a UFD)
Define ¢(a) = |a| V a € Z.
Let a,b€ Z,a#0,b# 0 and a | b.
Then b = ac for some ¢ € Z

b = lac| = lal|c]
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< fal < 1ol
By the division algorithm in Z, we get for a,b € Z, b # Z 3 unique
q,r € Z >
a=gb+r, r=0o0r0<r<|b.
a=qgb+r, ¢o(r)< o).
. Zisa ED.
14.3.5 Example. Z[i], the ring of Gaussian integers is a ED.
Define ¢ : Z[i] — Z by
P(a+ib) = a® +b* = (a+1ib)(a — ib) ¥V a + ib € Z[i]
For each a € Z[i], ¢(a) = aa = |af*.
Then
(i) ¢(a) >0, ¢la) =0 <= a=0.
(i) $(aB) = B(a)(8)
(ili) «is aunit <= ¢(a) = 1.
Sol.
(i) ¢(a) =|a]*>0,¢(a) =0 < |a|] =0 <= a=0.
(i) ¢(aB) = lapP=|a?|B]* = d(a)d(B).
(iii) Suppose « is a unit.
dpeZlil>aB=1
ie. ¢(af) = o(1) = 1
¢(a)o(B) = 1.

Suppose ¢(a) = 1.

= la*=1 = aa=1.
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.. als a unit.

Let a + ib be a unit in Z]i].

Then a®? +b*>=1,a,bc Z.
S(a=%xland b=0) = +1

or
(a=0,b=+1) = +i
. £1, %4 are the units in Z]i].
Let a | 5.

= [ = ar, for some r € Z[i].

= ¢(a) < ¢(8).
Let o, 8 € Z]i], B # 0.

Consider « | £, which may or may not lie in Z[i].

Write a | B = a +ib, a,b € R.
a = (a+1ib)p.
Consider integers m, n such that
la—m| <3, |b—n| < 3.
We are sure to get such integers m,n.
Take v =m +in € Z[i].
Then a = (a + 1b)3
=((a—=m)+i(b—n))B + 5.
Write 0 = ((a —m) 4+ i(b —n))p.
Then o = v + §, where «, 3,7 € Z[i].
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= 6 € ZJi].
= a—p € Z]i.
= J € Z[i].
Thus 3 v, € Z[i] 2 a =~5 + 0.
¢(6) = |0]* = [(a —m) +i(b — n)B[>.
=|(a —m) +i(b —n)?B?
< (z+ I8
=318* <18
= o()
¢(0) < o(B).
.. Z]i] is a Euclidean domain.
.. Z[i] is a PID and hence a UFD.
14.3.6 Problems. Suppose R is a ED with ¢ : R — Z. Prove the following
(i) b# 0= ¢(0) <o(b).
(ii) a,b are associates = ¢(a) = ¢(b).
(ili) a | b and ¢(a) = ¢(b) = a,b are associates.
Sol. (i) b#0.
= a,be R, b#0.
= 0=0.b+0.
2o 0(0) < o(b).
(ii) Suppose a, b are associates.
= a|bandb]|a.
= 6(a) < 6(b) < d(a).
= ¢(a) = ¢(b).
(iii) Suppose a | b and ¢(a) = ¢(b).
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Then to prove that b | a.
Jq,7 € R > a=bg+r, where ¢(r) < ¢(b).
Suppose if possible r # 0.

a|b.
= b = ax for some r € R.
a=q(ax) + .
= r=a(l —qx).
=alr.
= ¢(a) < o(r) < ¢(b).
ie. d(a) < d(b) = ¢(a).
oL o(a) < ¢(a), absurd.
r=0.
a=gqgborb]|a.

Thus a | b and b | a.

= a, b are associates.
14.4 Summary

In this lesson we have established that every ED ia a PID. Also Z[i], the
ring of Gaussian integers is a ED and hence a PID and UFD
14.5 Glossary

Euclidean domain, The ring of Gaussian integers.
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LESSON-15

POLYNOMIAL RINGS OVER UNIQUE
FACTORIZATION DOMAIN

15.1 Introduction : In this lesson we study Polynomial rings over a com-
mutative integral domain. Also we prove that a polynomial ring over a UFD
is also a PID

15.2 Polynomial Ring

15.2.1 Definition: Suppose R is a commutative ring. Then R[x] = {(ao, a1, as, . .

a; € R}, the set of all finite sequences of members in R. (ag,a1,as,...) is a
finite sequence we mean a; = 0 V ¢ > k for some k.
For (ag,as,as,...), (bo,b1,bs,...) € R[x], define
(ag, ay,as,...)+ (b, by, by, ...) = (ag+ bo,a; + by + ag + ba, . ..)
(ag,ai,as,...).(bo, by, ba,...) = (co, 1, Co,...), where
co = apbg, c1 = agby + a1by

Co = CLQbQ + (llbl + a2b0
Cr = aobr + albr—l + CLQbT_Q + ...+ arbo

Then R[] is a ring under these operations, called the polynomial ring over
R in the variable z.

Suppose (ag, a1, as, ...) € R[z|. Then 3k > (ag, a1, as, ..., ax_1,a;,0,0,0,...),
ap # 0

we denote the element by ag+ a1 +asx®+. . . +a,z" and this is a polynomial

in x.
2 k
(ag, a1, as,...,a,0,0,0,...) = ap + a1x + asx” + ... + arx
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write f(x) = ag + a1x + apx® + ... + agz®, ap #0, k > 0.

ay is called the leading coefficient of f(z) and k is called the degree of
the polynomial f(z). If a; = 0 V i, we call f(z), the zero polynomial for which
we does not assign any degree.

In case f(z) = ag, ap # 0, f(z) is called a constant polynomial and
degree of f(z) is taken as zero.

Let f(x) = ap + a17 + agz® + ... + axz®, (ax #0)

f(x) = by + byx + bz + ... + bpzt, (b #0)

Then

f(z).g(x) = agby + (aoby + arbo)x + (agbs + a1by + agbo)x® + . .. + apbz™ .

Suppose R[z] = {f(x) : f(x)is a polynomial with coefficients inR}. Let
f(x) € R[z], where R is a UFD, with f(z) = ag + a1z + az® + ... + a,z",
(an # 0)

If a,, is a unit, then f(x) is called a monic polynomial.

If ged(ag, ai, as, . .., a,) is a unit, then f(z) is called a primitive polynomial.
ged(ag, ay, as, . . ., ay,) is called the context of f(x) and is denoted by ¢(f(x))
or ¢(f)

15.2.2 Note: Every monic polynomial is a primitive polynomial.

15.2.3 Example: Consider Z[z] f(z) = 1+ x + 2% — 2%, g(x) = 2 + 4o —
62% + 2 are monic polynomials in Z|x].

15.2.4 Example: f(z) =2+ 6x — 10x%is not a primitive polynomial.
Sol. Since ged(2,6, —10) = 2 is not a unit. Hence given f(x) is not a primi-
tive polynomial.

Here ¢(f(z)) =2
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f(z) =21+ 3z — 52%) = 2(f1(x)), where fi(x) =1+ 3z — 5x?
fi(z)) is primitive.
15.2.5 Note: If f(z) € Z[z], then f(x) = cfi(z), where fi(z) is a primitive
polynomial.
15.2.6 Theorem (Division Algorithm):
Let R = F[z], where F' is a commutative integral domain. Let f(z), g(x) #
0 € Flx] of degrees m and n respectively. Let k = max{m —n+ 1,0}. Sup-
pose that a is the leading coefficient of g(x), then there exists polynomials
q(x),r(z) in F[z] uniquely satisfying a* f(x) = q(x)g(z) + r(z) where either
r(z) = 0 or deg r(z) < deg g(z).
Proof. Let b be the leading coefficient of f(z).
We prove the theorem by using induction on m (=deg f(z)). Infact to prove
the existence of ¢(x) and r(z).
If m < n, then take ¢(z) = 0 and r(z) = f(x), so that
f(x) = 0.g(x) + f(z), deg f(z) = m < n= deg g(z)
where k = maz{m —n+ 1,0} =0 — a* f(x) = f(z).
Suppose m > n.
Suppose by the induction hypothesis ¢(z), r(x) exists for all polynomials of
degree <m. —— (1)
Let fi(z) = af(x) — ba™ "g(x) € F[z]. Note that degf;(x) < m.
Then by the induction hypothesis, we get polynomials ¢;(z),r1(x) in F[z] 3
a fi(z) = qu(x)g(z) + r1(z)
where r1(z) = 0 or degry(z) < deg g(z).
Here k1 = maz{m — 1 —n+ 1,0} = maz{m —n,0} =m —n

a™ " fi(z) = qui(x)g(x) + ()
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Now ™ (af(z) = ba™ "g(x)) —»%<x>g<>-+r1<>

am*"“f(x)( b+ i () ) g(z) + (2
a* f(x) = q(x)g(x) + r(x), where r(z) = ( )

q(x) = a™ "bx™ " + qi(x) € Flz], deg r(x) < deg g(x).

This proves the existance of ¢(x) and r(z).

We now prove the uniqueness ¢(z) and r(x).

Suppose ¢ (), r'(z) are such that
a* f(2) = ¢ (z)g(x) +1'(x), deg r'(z) < deg g(x).

We also have a*f(z) = q(x)g(z) + r(z),

(¢@) = a@))g(2) = (@) = 7' (@) ——— (2)
As deg r(x), deg ' (z) < n, unless r(z) = r'(x) (2) leads to an absurdity
sor(x) =1 (2)

As g(z) # 0, g(z) = ¢ (2).
This completes the proof.
15.2.7 GAUSS LEMMA
Suppose f(z), g(z) € Rz], where Ris a UFD. Then ¢(f(z)g(z)) = c(f(z))c(g(z))
i.e. the product of two primitive polynomials is a primitive polynomial.
Proof.
fla) = c(f(2)) fil=).
pg(x) = c(g(x)) o
F@)g(@) = e fil@)eaqi (@), e = e(F(@)), ez = e(g(x)).
f(@)g(x) = ereafi(2) g1 ().
To prove that c(f(z)g(z)) = cica, it is enough to show that fi(z)g:(z)

x), where fi(x), g1(z) are primitive.

is a primitive polynomial.

*. In order to prove the theorem it is enough to show that the product
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of any two primitive polynomials is a primitive polynomial. We now prove
that fi(z)g;(x) is a primitive polynomial.

Suppose fi(x)g;(z) is not a primitive polynomial. Then there is a prime
(or irreducible) element p in R such that p divides each of the coefficients of
h@g@). ——— (1)
Write fi(z) = ap + a1z + asx® + ...+ a™z™, a,, # 0.

g1(z) =bo + byx + bogz® + ... + b™x™, by, #0, a;,b; € R.
Then fi(2)g1(x) = co+ c1(x) + cox® + ...+ cat + ... + apbpz™ ™.
where ¢y = agby.
c1 = agby + a1bg.

¢y = apby + a1by + agby.

Cy = aobt + albt_l + ...+ atbo.

We have p|¢; Vj —————(2)
fi(z) is a primitive polynomial.

Let s be the least index > p 1 as.
g1(z) is also primitive.

Sk ptby, Kk least.

)

plao,p|a,p|as,...,p|as1butptas }
p ’ b07p | blap ‘ b?a 2 | bk*lbUtp*ak

Consider ¢y = aobspr + a1bspp—1 + ... + as_1bpp1 + asby + asp1bp—1 +

.. .—|—a3+kb0.
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By (2) and (3), we see that p | asbg. p is prime.
. But ptas, ptbg.
This contradicts the primality of p.
.. fig1(zx) is a primitive polynomial.

15.2.8 Theorem: If R is a UFD, then R[z] is also a UFD.
Proof. As R is a commutative integral domain with unity so is R[z].

We first prove that every non-zero element of R[z| is a finite product of
irreducible elements.———(1)
Let f(z)(# 0) € R[x].
We prove this by using induction on deg f(x).
Let deg f(z) = 0. Then f(z) =a € R, a # 0. R is a UFD.
= a = pi1ps2...Ps, a finite product of irreducible elements.

Assume that, by the induction hypothesis, the result (1) is same for all
the polynomials of degree < deg f(z). ———(2)

In case f(z) is irreducible, then there is nothing to prove.
So suppose f(x) is not irreducible. Then f(z) = fi(x) fo(z) for some fi, fo(z) €
R|x], wherein neither fi(z) nor fo(x) is a unit.

Note that deg fi(z) < deg f(z), deg f2(x) < deg f(x),
.. By the induction hypothesis (2) fi(z) and fa(x) can be written as a finite
product of irreducible elements in R[x] and hence f(z) is also a finite product
of irreducible elements of R[z].
This proves (1)

We now prove that every irreducible element of R[z] is a prime element.

Let p(x) be an irreducible element.

Let p(z) | f(x)g(), f(x), g(x) € Rla].
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It is enough to prove that either p(z) | f(x) or p(x) | g(z).
Assume that p(z) t f(z)
Suppose deg p(z) = 0. Then p(z) € R, say p(x) =b, b € R. R is a UFD.
¢ | F(2)g(x) = F(x)g(x) = bh(z) for some h(z).
= c(f(a:))c(g(x)) = bc(h(x)).
=0 | c(f(x))c(g(x))
= b c(f(x)) or b c(g(x)).
But /(x) = ¢(f(2)) (@), g(e) = e(9(x) ) o x).
bl e(f@) A or b e(g(@))ar ()
ieb| f(x)orb]g(z).
p(@) | £(@) or pl(a) | g(a).
. p(x) is prime in this case.
So suppose deg p(z) > 0. Consider the ideal generated by p(z) and f(z) i.e
(p().f(@)) i Rlo).
Infact
§ = (pl@), f(2)) = {A@)p(@) + B)p(e) : Alx), B(x) € Rlal .
Let ¢(z) be a polynomial of least degree in <p(x), f(x)>
Let a be the leading coefficient of ¢(x). f(z), ¢(x) € R[z], ¢(x) # 0.
.". By the division algorithm.
a* f(z) = q(x)d(x) + r(x), r(x) = 0 or deg r(z) < deg ¢(),
where r(x), q(z) € R[z].
a*f(x) € S, p(z) € S, q(z) € Rlx]. = q(x)p(x) € S.
coaff(z) — q(x)é(x) € S, r(x) € S.
If r(z) # 0, then this leads to a contradiction to the nature of ¢(z).
c.or(z) = 0.
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cd f(x) = q(z)d(@).
= q(x)c(@p)p1(x), ¢1(x) is primitive.

= afc(f) = c(t)c(¢1), By Gauss Lemma
S abe(f) = oft) (- c(61) = 1 as 6 s prime)
= a" | c(t) (But t(z) = c(t)t;(z)).
= a* | c(t)ty(x) = t(z)
= a* | t(x).
¢1(z) | f(x).

Similarly we can see that ¢1(x) | p(z).

But p(z) is irreducible and p(z) t f(z) i.e. p(x), f(x) are relatively prime.
&) | ged (p(), £(2)).
oo ¢1(r) is a unit ie. ¢1(z) € R.

But ¢(z) = c(¢)pr(x) € R
coo(x) =a€S.

-3 A(x), B(x) € Rlz] 3 a = A(x)p(x) + B(z) f(z).
= ag(z) = A(z)p(x)g(z) + B(z) f(z)g(x)

But p(z) | f(x)g(x), p(x) | p(x)g(z).
~p(x) | A@)p(z)g(z) + B(z)f(x)g(x) = ag(x).
~ p(x) | ag(x).
ag(x) = t(x)p(z) for some t(x) € R|x].

T

ac(g) = c(t)e(p), by Gauss Lemma.
ac(g) = c(t). (p(z) is irreducible = ¢(p) = 1)
coale(t).
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= a | c(t)ti(x) (. t(x) = c(x)ti(x)).

= a | t(x).
Now a | t(x), ag(z) = t(x)p(x).

(@) | 9(a).
15.3 Summary

In this lesson we have established the division algorithm in a polynomial

ring F[z]. Moreover we proved that the product any two primitive polyno-
mials is again primitive.
15.4 Glossary

Polynomial ring, Division algorithm, Primitive polynomial .
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LESSON-16

RINGS OF FRACTIONS

16.1 Introduction : In this lesson we study the rings of fractions.
16.2 Definition: Suppose R is a commutative ring. An element a(# 0) €
R, which is not a zero divisor is called a regular element of R.
16.3 Definition: Let S C R. If 51,50 € S = 5159 € S. Then S is called a
multiplicative set.

If S is a multiplicative subset of R in which each element is regular
then S is called a regular multiplicative set.
16.4 Note: Suppose R is a commutative integral domain. Then R — (0) is
a regular multiplicative set.

Proof. Let a,b € R — (0).

=a#0,b#0.
= ab # 0
= ab e R — (0).

. R — (0) is a multiplicative set.
Infact every a € R — (0), a # 0 and «a is not a zero divisor.
Hence every element of R — (0) is a regular element.
Showing that R — (0) is a regular multiplicative set.
16.5 Theorem: suppose R is a commutative ring and S a multiplicative
subset of R. Then define a relation ~ on R x S as follows:
For (a, s1), (b, s2) € R x S, define
(a,s1) ~ (b,s2) = F s3 €S 3 s3(asy —bsy) =0.
Then ~ is an equivalence relation on R x S.
Proof.

Let (a,s) € R x S. For any s; € S, we have s1(as —as) =0
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giving (a, s) ~ (a, s), proving ~ is reflexive.
Let (a,s1) ~ (b, s2).
= Js3 €5 3 s3(asy —bsy) =0
= s3(bs; —asg) =0
= (b, s2) ~ (a, s1)
showing ~ is symmetric.
Let (a, s1) ~ (b, s9), (b, s2) ~ (¢, s3). To prove that (a, s1) ~ (¢, s3). Then
35,5 €835 (asy—bsy) =0, s (bsg — csy) = 0.
Now s s35 (asy — bsy) = 0 and
s'518 (bs3 — csy) = 0. Adding these two we get
8//838/826L — s/sls”ch = 0.
s's"sy(ass — cs1) = 0. (5" =55"s,€9)
s (ass —csy) = 0.
which implies (a, s1) ~ (¢, s3), proving ~ is transitive.
Hence ~ is an equivalence relation.
16.6 Theorem: Denote the equivalent class of (a,s) € R x S by 2. Write
RS:{%:CLGR,SES}.

Define +,. on R, as follows:

ar + az __ ai1satassy

S1 S2 S182

ai a2 __ A152.4251 ai a2

i 92 — : (V& 2 cR)
1782 8182 s17 82

Then R, is called the ring of fractions of R with respect to S or localisation
of R at S or quotient ring of R with respect to S.
Proof.

Let 2 be the equivalent class of (a, s)

% = [(a7 S)]
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=4 (b, s/) . (b, 5’) ~ (a, 5)}
= (b, s") s (as —bs) =0 for some s € S}
Clearly
R, = {% ca€ R,s € S} , 2 =[(a, s)] is a ring with unity (with zero g and

unity ? for any s € 5)

a + 0 _ a1s+0.s1 _ a1s __ a1
51 s 518 518 s1

asi

< since ¢ =
S SS1

> [(a,8)] = [(as1,851)], (a,5) € [(a,5)]
< (a,s) ~ (asi1, ss1) because
s'(ass; —as;s) =0V s €8
Therefore (asy, ss1) € [(a, s)]

(as1,ss1) € [(as1, $s1)]

proving [(a, s)] = [(asy, s51)]
Which gives ¢ = ﬂ)
s 881
al S __ a1s __ ai
s1°s  s1s  s1

16.7 Theorem: Suppose S is a multiplicative subset of a commutative ring
R. Let R, be the ring of fractions of R with respect to S. If 0 € S, then
Rs = (0).

Proof.

0esS; 2€R;

&= % YV s1 € s.

In particular, 0 in the place of s1, gives

©_0-9  (§=0e8)

s 0
" R,=0 (§ =0 of R,
2=10fR,)
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=%,s =0€ S5 = 7 is unity.

(0=1€ Rsif0€9).

olo
)

16.8 Theorem: Suppose S is a multiplicative subset of R, where R is a
commutative ring. Then there is a natural homomorphism f : R — R, given
by f(a) = % V a € R and for some fixed s € S. Moreover, f is a monomor-
phism (i.e 1 — 1 homeomorphism)

— "zeSacRra=0=a=0"

Proof.

Clearly f: R — R, (as€ R,s€S= 2 €R,)

Let a1,a; € R. Then f(a;) + f(ag) = ** +

S

__ a1858+asss
ss

a152+ass? _ (a1+az)s?
52 - 52

_ (a1tag)s
- s

flan + ag) = (e

flar)flag) = %2955 = e = e

flarag) = =525,

.. f is homomorphism.

is monomorphism <= kerf = (0)

{a € R: f(a) =0 of Ry} = (0)
faeR:==2=()

{a € R: (as,s) ~ (0,s)} = (0)

{aeR:35 € s s'(ass—0s) =0} = (0)
{ac R:35 €S > as®’s =0} = (0)

{a € R:ax =0,z € S} =(0)

—

(I A A

"ax =0,xr € S=a=0"
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16.9 Theorem: Suppose R is a commutative ring with some regular el-
ements. Let S be the set of all regular elements of R. Then we have the
following statements.
(i) R can be embedded in R;.
Treating R to be a subring of R, we have

(ii) Every regular element of R is invertible in R;.
(ili) Every element ¢ € R, can be written as as’,a € R,s € S.
Proof.
Claim: S is a multiplicative subset of R.
Let sq,s9 € S. Then sy, so are regular elements.

. 81,82 # 0 (otherwise s, so become zero divisors)
If 3s€85 3 (s15)s =0, then s1(s25) = 0.
But s; being not a zero divisor, we have sys = 0
S9 1s not also a zero divisor.

s =0.

*. 8189 18 not a zero divisor.

8180 € 5.

*. S is a multiplicative set.
Let R, be the ring of fractions of R with respect to S.
We know that f: R — R, given by f(a) = % is a homomorphism.
Let z € S;ae€ R > azx=0.
x € S = z is a regular element.

= x is not a zero divisor.

s.a=0

.. fis 1 — 1 homomorphism. R — R,
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.. R is embedded in Rg.
As such we can treat R as a subring of R, by identifying a € R with #* € R,.
a<r 2
Let a € S i.e. a is a regular element of R.

Consider b = = (for some s € 5)

(‘.'aeS:>as€S
sG(SC)R:%ERS)

Then b € R;.

R S_ass_ass_s/_
a.b—a.E—?.E—E—S—,—leRS.
(s =as®> € 9)

be Rganda ' =0

—1 s

g l= =
as
Let % € Rg
sl =gt =k - s o
-1
LA = a8

© 81

16.10 Theorem: Every commutative integral domain can be embedded in
a field.

Proof. Suppose R is a commutate integral domain.

Take S = R — (0), which is the set of all regular elements of R.

.. R — R, where every regular element of R is invertible in R,.

Let ¢t € Ry, & # 0 of R, %%g

s51€S=R—(0) = s; #0.

a1
S1

aleS,sle(SQR):%ERS.

ai S1 __ a1s1 __ S "
Then 2.2t = 8% =% (s = a5 € 5)

_ 0
=;=>u#0=a €Sl

»
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=1 of R,
| (u )1 = s
. Ry is a field and R is embedded in R,.
R, is called the field of fractions.
16.11 Definition (Local Rings):
Suppose R is a ring with unity. If R has a unique maximal right ideal, then
R is called a Local ring.
16.12 Theorem: Suppose R is a commutative ring, P a prime ideal in R.
Let S = R — p. Then S is a multiplicative subset of R and R, is a local ring
with the unique manimal ideal py, where p, = {¢ :a € p,s € S}
Proof. Let 51,50 € 5. S=R—p
= $1,50 € p = s152 ¢ p (. p is a prime ideal)
(For7 if 5159 € p, p is a prime ideal in R, R commutative.
= S1 € p or s5 € p which is not true.)
S180 € p = 8S189 €E R—p=5 = 518 € S.
.. S is a multiplicative set.
.. Rs is a commutative ring.
Consider p, = {%:a € p,s € S}.
Let ¢, 2 € p,. Then &+ — 2 = @228
p is a (prime) ideal, a; € p,as € p, s152 € (S C)R
= A152 — Q981 € P
La - ‘s‘—j € Py

S1

Let £ € RS,% € ps.
a1 _ zay

b= 2 where ss; € 5.

|8

8

€ R, a1 € p, pis an ideal = xa; € p.
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" % € P,
.. Ps is an ideal in R,.

We now prove the manimal ideal nature of p;.

Let A be an ideal in R, 3 p; € A C R,.

Let ps # A ieps C A.

Then 32 € A> 2cp,. Herex € S, x ¢ p.
r¢p=>x€ER—-p=S=z€S
s€(SCR),reS="=€R,

Now 2 € R,, 7 € A, A is an ideal.
srteAieZ e A

A contains the unity of R.

o A= R,
.. P, is a maximal ideal in R,.

To prove that R, a local ring it remains to be shown that P, is unique.

Let B be a maximal ideal in Ry and B # p,.

Then B # R,.

Then 3 £ € p, but £ € B and (agepsbut§¢3)

Let £ € B but £ € p,.

Then B = R, which is a contradiction.

.. Ry is a local ring.

16.12 Summary
In this lesson Every commutative integral domain can be embedded in

a field.

16.13 Glossary

Regular element, Ring of fractions, Local element.
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