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UNIT-I

LESSON-01

PRELIMINARIES

NORMAL SUBGROUPS-ISOMORPHISM

THEOREMS

1.1 Introduction.

Recall that the symmetric group on three symbols is denoted by S3 and is

described as follows

S3 = {e, a, a2, b, ab, a2b
/
a3 = 2 = b2, ba = a2b}

Clearly H = {e, b} is a subgroup of S3.

Now consider the cosets aH,Ha where a ∈ S3

aH = {ae, ab} = {a, ab}

and Ha = {ea, ba} = {a, ba} = {a, a2b}.

Observe that aH 6= Ha whereas if N = {e, a, a2} then we also know that N

is a subgroup of S3

Now for b ∈ S3, we have bN = {be, ba, ba2} = {b, a2b, ab}.

and Nb = {b, ab, a2b}.

In this case observe that bN = Nb. It is not a just coincidence.

E.Galois is the first mathematician, who recognised that those subgroups

of a group for which the left and right cosets coincide are of some special one.

This observation led to the following notion of normal subgroups.

1.2 Normal Subgroup.

1.2.1 Definition:

Let G be a group. A subgroup N of G is called a normal subgroup of G if

xNx−1 ⊂ N for every x ∈ G. We denote this by writing N CG.
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Observe that G, {e} are always normal subgroups of a group G where

e ∈ G is the identity. Further note that, if G is an abelian group, then every

subgroup of G is normal in G.

In the following theorem, we give some equivalent conditions for a sub-

group of a group to be a normal subgroup.

1.2.2 Theorem

Let N be a subgroup of a group G. Then the following are equivalent.

(i) N CG

(ii) xNx−1 = N for every x ∈ G.

(iii) xN = Nx for every x ∈ G.

(iv) (xN)(yN) = xyN for all x, y ∈ G.

Proof.

Given that N is a subgroup of a group G.

To prove the theorem, we prove (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (iv) and

(iv)⇒ (i).

(1) (i)⇒ (ii)

First suppose N is a normal subgroup of G i.e. N CG. Let x ∈ G.

Then by definition of a normal subgroup, xNx−1 ⊂ N. Also we have x−1 ∈ G.

Hence xNx−1 ⊂ N. Therefore N = x(x−1Nx)x−1 ⊂ xNx−1 which proves

that N ⊂ xNx−1. Hence xNx−1 = N, proving (ii).

(2) (ii)⇒ (iii)

Now suppose xNx−1 = N for every x ∈ G.

Nx = (xNx−1)x = xNe = xN.

proving (iii).

(3) (iii)⇒ (iv)
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Suppose xN = Nx for every x ∈ G.

Let y ∈ N

Now (xN)(yN) = x(Ny)N = x(yN)N = xyNN = xyN.

Since NN = N as N is a subgroup of G.

Therefore xN.yN = xyN.

(4) (iv)⇒ (i)

Finally assume that (iv) holds

That is xN.yN = xyN for all x, y ∈ G.

Now xNx−1 = xNx−1e ⊂ xx−1N = eN = N since x−1e ∈ x−1N.

Proving that xNx−1 ⊂ N (actually we have xNx−1 = N).

Hence N CG. Hence the theorem.

Some other results on normal subgroup, we relegate to exercises.

1.3 Quotient group.

If N is a normal subgroup of G, we have shown that every left coset of N

in G is a right coset of N in G and vice versa , that is we cannot distinguish

between the left and right cosets of N .

We denote that set of all left (right) cosets of N in G by G
N
. Also recall

that this set is closed under multiplication of cosets namely xN.yN = xyN,

where x, y ∈ G.

1.3.1 Definition.

Let N be a normal subgroup of a group G then the set G
N

of all left (right)

cosets of N is a group under coset multiplication that G
N

= {xN |x ∈ G}.

xN.yN = xyN where x, y ∈ G.

It is easy to see that
(
G
N
, .
)

is a group under multiplication the group G
N

is

called the quotient group of G by N.
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1.3.2 Remark.

Recall if (G, .) and (G, ∗) are any two groups and f : G→ G
′

is a homomor-

phism, then the kernel of φ is denoted by kerφ and is defined as

kerf = {x ∈ G
/
f(x) = e

′}.

where e
′

is the identity of G
′
.

Clearly e ∈ kerf and kerf is always a normal subgroup of G.

Further if the mapping φ : G→ G
N

is defined by φ(x) = xN, x ∈ G. Then

φ is a surjective homomorphism and kerφ = N . This mapping φ is called as

the canonical homomorphism.

1.3.3 Definition

Let G be a group and S be a non empty subset of G. Then the normalizer of

S in G is denoted by N(S) and is defined as N(S) = {x ∈ G/xSx−1 = S}.

If S = {a} that is the normalizer of a singleton set {a} is denoted by

N(a).

Clearly N(S) is a subgroup of G.

Further if H is any subgroup of G, then N(H) is the largest subgroup of G

in which H is normal. Also if K is a subgroup on N(H), then H is a normal

subgroup of KH.

1.4 Derived group

Let G be a group. For any a, b ∈ G, aba−1b−1 is called a commutator in

G.

The subgroup of G generated by the set of all commutators in G is called

as the commutator subgroup of G or the derived subgroup of G. We denote

this by G
′
.

1.4.1 Remark
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It is easy to see that G
′

is a normal subgroup of G and the quotient group

G
G′

is abelian. Further if H CG then G
H

is abelian if and only if G
′ ⊂ H.

1.5 Isomorphism Theorems

Let N be a normal subgroup of G. We know that the quotient group

G
N

is the homomorphic image of G under the canonical homomorphism (Re-

mark 1.3.2). We now prove this, that is every homomorphic image of a group

G is isomorphic to a quotient group of G. More precisely, we state the first

isomorphism theorem.

Theorem 1.5.1 First Isomorphism Theorem

Let φ : G → G
′

be a homomorphism of groups then G
kerφ
' Imφ. Hence in

particular, if φ is surjective, then G
kerφ
' G

′
.

Proof.

Given that φ : G→ G
′

be a homomorphism of groups let K = kerφ = {x ∈

G/φ(x) = e
′}. Also recall Imφ = φ(G) = {φ(x)/x ∈ G}.

Now define the mapping ψ : G
K
→ Imφ by ψ(xK) = φ(x) for any xK ∈ G

K
.

First we show that ψ is well defined.

For any x, y ∈ G let xK = yK which implies y−1x ∈ K. Thus we have

φ(y−1x) = e
′

from which we get φ(y−1)φ(x) = e
′

which imply φ(x) = φ(y).

Hence ψ is well defined.

We now prove that ψ is a homomorphism.

For x, y ∈ G, ψ(xK.yK) = ψ(xyK) = φ(xy) = φ(x)φ(y).

= ψ(xK)ψ(yK) since K is a normal subgroup of G and φ is a homomor-

phism, proving that ψ is a homomorphism.

Also if ψ(xK) = ψ(yK) we have φ(x) = φ(y).

which imply φ(y)−1φ(x) = e
′

which gives φ(y−1x) = e
′
.
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⇒ y−1x ∈ K ⇒ xK = yK, proving that ψ is one-one.

Also if φ(x) ∈ Imφ for x ∈ G, we have ψ(xK) = φ(x), showing that ψ is

onto.

Therefore G
K

is isomorphic to Imφ that is G
K
' Imφ.

Further if φ is onto then Imφ = G
′
, we have G

K
' G

′
, completing the

proof.

As the second and third isomorphism theorems are simple consequences

of first isomorphism theorem, we leave the proofs of these theorems to the

reader as exercise. so we just state these results in the following theorems.

1.5.2 Theorem (Second isomorphism theorem)

Let H and N be subgroups of a group G and N CG. Then H
H∩N '

HN
N
.

Proof. Exercise.

1.5.3 Theorem (Third isomorphism theorem)

Let H and K be normal subgroups of a group G and K ⊂ H. Then
G
K
H
K

' G
H
.

Proof. Exercise.

The following theorem provides a relationship between the subgroups (normal

subgroups) of a group G and the subgroups (normal subgroups) of another

group G
′

where φ : G → G
′

is a homomorphism. As the proof of this the-

orem is simple, the details are left to the reader. This result is known as

correspondence theorem.

1.5.4 Theorem (Correspondence theorem)

Let φ : G→ G
′

be a homomorphism of group G onto a group G
′
. Then the

following are true.

(i) H < G ⇒ φ(H) < G
′
.
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(ii) H
′
< G

′ ⇒ φ−1(H
′
) < G.

(iii) H CG ⇒ φ(G) CG
′
.

(iv) H
′
CG

′ ⇒ φ−1(H
′
) CG.

(v) The mapping H 7→ φ(H) is a 1− 1 correspondence between the family

of subgroups of G containing kerφ and the family of subgroups of G
′
; further

more, normal subgroups of G correspond to normal subgroups of G
′
.

Proof. Exercise.

1.5.5 Remark

Let N be a normal subgroup of G. Given any subgroup H
′

of G
N
, there is a

unique subgroup H of G such that H
′

= H
N
. Further H C G if and only if

H
N
C G

N
.

1.6 Definition (Maximal normal Subgroup)

Let G be a group. A normal subgroup N of G is called a maximal normal

subgroup of G if

(i) N 6= G.

(ii) H CG and H ⊃ N ⇒ H = N or H = G.

1.6.1 Definition

A group G is said to be simple if G has no proper normal subgroups;

that is G has no normal subgroups except {e} and G.

1.6.2 Remark:

Let N be a proper normal subgroup of G. Then N is maximal normal

subgroup of G if and only if G
N

is simple.

1.6.3 Remark

Let H and K be distinct normal subgroups of a group G then H ∩K is
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maximal normal subgroup of H and also of K.

1.7 Summary

In this lesson we have introduced the notion of normal subgroup and

then defined quotient group. Also we have defined the derived group.

Also we have observed that normal subgroups are kernels of homomor-

phisms and vice versa. Further we have proved first isomorphism theorem

and stated correspondence theorem. At the end of the section, we have

defined the notion of maximal subgroups and then stated a result which es-

tablishes the relation between simple groups and maximal normal subgroups.

1.7 Model Examination Questions

(1) Prove that the center Z(G) = {x ∈ G/xa = ax ∀a ∈ G} is a normal

subgroup of the group G.

(2) Let G be a group and H is a subgroup of index 2, then show that H is

a normal subgroup of G.

(3) If N and M are normal subgroups of a group G such that N ∩M = {e}

then show that nm = mn for all n ∈ N,m ∈M.

(4) Give an example of a non abelian group each of whose subgroups is

normal.

(5) If N is a normal subgroup of a group G and H is a subgroup of G then

show that NH is a subgroup of G. Further if H CG, then show that NH is

also normal in G.

(6) Let H be a subgroup of G such that x2 ∈ H for every x ∈ G. Then show

that H is a normal subgroup of G.

(7) Write down all normal subgroups of S4.

(8) If G is a group with center Z(G) and if G
Z(G)

is cyclic then show that G
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is abelian.

(9) Show that there does not exist any group G such that
∣∣∣ G
Z(G)

∣∣∣ = 37.

(10) Show that a non abelian group of ordet 6 is isomorphic to S3.

(11) Write down all the homomorphic images of

(i) the Klein four group.

(ii) the octic group.

(12) Show that each dihedral group is isomorphic to the group of order 2.

1.9 Glossary

Normal subgroup, Quotient group, Derived group, Simple group.
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LESSON-02

AUTOMORPHISMS

2.1 Introduction.

The central idea which is common to all aspects of modern algebra is the

notion of homomorphism. By this we mean a mapping from one algebraic

system to another algebraic system which preserves structure

In the following section, we give some basic definitions which are useful in

later sections of our lesson

2.2 Basic Definitions.

Let G and H be any two groups.

(i) A mapping φ : G→ H is called a homomorphism

if φ(xy) = φ(x)φ(y) for all x, y ∈ G.

(ii) If φ : G→ H is a one - one homomorphism, then φ is called

a monomorphism of G into H.

In this case we say that φ is an embedding of G into H

(iii) If φ : G→ H is an onto homomorphism,

then φ is said to be an epimorphism.

In this case we say that G is homomorphic to H

or H is said to be the homomorphic image of G

(iv) If φ : G→ H is a bijective homomorphism,

then φ is said to be an isomorphism of G onto H, and we say that G is

isomorphic to H and in this case we denote it by writing G ' H.

(v) A homomorphism of G into itself is called an endomorphism of G

2.3 Definition: Automorphism

An isomorphism of a group G onto into itself is called an automorphism, that

is an automorphism of group G is an automorphism of G is an isomorphism
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of G onto G itself.

The set of all automorphisms of G is denoted by Aut(G) that is

Aut(G) = {φ : φ : G→ G is an isomorphism}

2.3.1 Remark:

For any group G, the identity map i : G→ G defined by i(x) = x ∀x ∈ G

is an automorphism

Thus for any group G, Aut(G) is non empty

2.3.2 Lemma:

Let G be a group. For every g ∈ G, the mapping Ig : G→ G defined by

Ig(x) = gxg−1 for all x ∈ G is an automorphism of G.

Proof: Given that G is a group.

For any g ∈ G, Ig(x) = gxg−1 for any x ∈ G

First we prove that Ig is a homomorphism.

Let x, y ∈ G

Ig(xy) = g(xy)g−1 = gxg−1gyg−1 = Ig(x)Ig(y).

Ig is one-one : For any x, y ∈ G ,

If Ig(x) = Ig(y), then gxg−1 = gyg−1

We have x = y

Further Ig is onto: For each x ∈ G . There exists an element gxg−1 ∈ G such

that Ig(g
−1xg) = g(g−1xg)g−1 = x

Therefore Ig is an automorphism of G.

2.3.3 Definition: Inner automorphism:

Let G be a group. For a given g ∈ G, the mapping Ig : G→ G defined by

Ig(x) = gxg−1 for all x ∈ G is an automorphism of G,is called an inner au-

tomorphism of G determined by g ∈ G.
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The set of all inner automorphism of G is denoted by Inn(G) or in G.

2.3.4 Remark:

For any group G, Inn(G) is nonempty since every element of G determines

an inner automorphism of G and Inn(G) is subset of Aut(G).

2.3.5 Theorem:

The set Aut(G) of all automorphisms of a group G is a group under the

composition of mappings and Inn(G) C Aut(G)

Moreover G
Z(G)

C Inn(G)

Proof: Let G be any group. Then we know that the symmetric group SG is

the group of all permutations of G under the composition of mappings.

Since the identity map on G is an automorphism of G , we have Aut(G) is

non empty.

Clearly, Aut(G) ⊂ SG

i) First we prove that Aut(G) is a group

Let σ, τ ∈ Aut(G) then στ and σ−1 are bijective.

For all x, y ∈ G, we have

(στ)(xy) = σ(τ(xy)) = σ(τ(x)τ(y))

= σ(τ(x))σ(τ(y)

= (στ)(x)(στ)(y)

Showing that στ ∈ Aut(G)

Further, σ(σ−1(x)σ−1(y)) = σ(σ−1(x))σ(σ−1(y))

= (σσ−1)(x)(σσ−1(y)

= xy

Which gives σ−1(xy) = σ−1(x)σ−1(y)

Thus σ−1 ∈ Aug(G) ∀ σ ∈ Aut(G)
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Therefore Aut(G) is a subgroup of the symmetric group SG

Hence Aut(G) is a group.

(ii) We now prove G
Z(G)

∼= Inn(G)

Define a mapping φ : G→ Aut(G) by φ(a) = Ia for any a ∈ G

For any a, b ∈ G and for all x ∈ G,

Iab(x) = (ab)x(ab)−1

= a(bxb−1)a−1

= Ia(bxb
−1)

= IaIb(x)

which implies Iab = IaIb

That is φ(ab) = Iab = IaIb = φ(a)φ(b)

showing that φ is a homomorphism.

Also for every Ia ∈ Aut(G), there exists a ∈ G such that φ(a) = Ia.

Now, kerφ = {a ∈ G/φ(a) = identity automorphism of G }

= {a ∈ G/Ia = identity automorphism of G }

= {a ∈ G/Ia(x) = x ∀x ∈ G}

= {a ∈ G/axa−1 = x ∀x ∈ G}

= {a ∈ G/ax = xa ∀x ∈ G}

= Z(G), the center of G.

Therefore, by the fundamental theorem of homomorphism, G
kerφ
∼= Inn(G)

That is G
Z(G)

∼= Inn(G).

(iii) Finally, we prove Inn(G) C Aut(G)

Let σ ∈ Aut(G) and Ia ∈ Inn(G) where a ∈ G .

Now, (σIaσ
−1)(x) = σIa(σ

−1(x))

= σ(Ia(σ
−1(x))
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= σ(aσ−1(x)a−1)

= σ(a)σ(σ−1(x))σ(a−1)

= σ(a)xσ(a−1)

= Iσ(a)(x) for any x ∈ G

Therefore, we have σIaσ
−1 = Iσ(a) where σ(a) ∈ G.

As σ(a) ∈ G, we have Iσ(a) ∈ Inn(G)

Hence we have σIaσ
−1 ∈ Inn(G) ∀ σ ∈ Aut(G), Ia ∈ Inn(G)

Which shows that Inn(G) C Aut(G)

2.3.6 Remark:

If Z(G) = {e}, then from of the above theorem G ∼= Inn(G).

2.3.7 Definition: Complete group

A group G is said to be complete if (i) Z(G) = {e}, and

(ii) every automorphism of G is an inner automorphism of G

That is G is complete if G ' Inn(G) = Aut(G).

2.3.8 Example.

Let σ be an automorphism of a group G. Then for any x ∈ G, x and σ(x)

are of same order

Proof:- Given that σ : G → G is an automorphism where G is any group

and let x ∈ G

Let o(x) = m and σ(x) = n

we now show that m=n

Now, (σ(x))m = σ(x).σ(x). · · ·σ(x) (m times )

= σ(xm)
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= σ(e)

= e

But o(σ(x)) = n. Therefore n/m→ (1)

Again σ(xn) = σ(x.x.x...x)

= σ(x).σ(x).σ(x) · · ·σ(x) (n times )

= (σ(x))n

= e

= σ(e)

This implies xn = e, since σ is one-one

But o(x) = m Therefore m/n→ (2)

Form (1) and (2) it follows that m=n

In the following example, we prove S3 is a complete group

2.3.9 Example:

The symmetric group S3 is complete

Proof.We know that the symmetric group S3 is as described as follows

S3 = {< a, b > /a3 = e = b2, ba = a2b}

= {e, a, a2, ab, a2b}

observe that o(a) = o(a2) = 3, o(b) = o(ab) = o(a2b) = 2

We now determine Z(S3).

Clearly ba = a2b 6= ab ⇒ a, b /∈ Z(S3)

and (ab)(a2b) = a(ba)ab = a.a2bab = bab = a2b.b = a2

(a2b)(ab) = a2(ba)b = a2(a2b)b = a4b2 = ae = a

Thus (ab)(a2b) 6= (a2b)(ab), from which we have ab, a2b /∈ Z(S3)

Further, if a2 ∈ Z(S3) then a = a2.a2 ∈ Z(S3), a contradiction.

Therefore Z(S3) = {e}
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Hence by theorem 2.3.3, we have S3

Z(S3)
' Inn(S3)

That is S3 ' Inn(S3)

We now define Aut(S3)

For any σ ∈ S3, we have σ(a) = a or a2 and

σ(b) = b, ab or a2b (in view of example 2.3.6)

as a,b are generators of S3, σ(x) is known for any x ∈ S3

Therefore |Aut(S3)| ≤ 6

since Inn(S3) is a subgroup of order 6

we must have |Aut(S3)| = 6 and Inn(S3) = Aut(S3)

Therefore S3 ' Inn(S3) = Aut(S3)

Hence S3 is a complete group.

2.3.10 Example:

Let G be a finite abelian group of order n and m be a fixed positive integer

relatively prime to n.

Then the mapping σ : G→ G defined by σ(x) = xm is an automorphism.

Solution:- Given that G is a finite abelian group of order n , and m be a

natural number such that (m,n)=1

Also σ : G→ G is given by σ(x) = xm

For any x, y ∈ G, σ(xy) = (xy)m = xmym since G is abelian

= σ(x).σ(y)

proving that σ is a homomorphism.

since m and n are relatively prime, there exists integers u and v such that

mu+nv=1

For all x ∈ G, we have xn = e since |G| = n
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x1 = xmu+nv = xmu.xnv = xmu.(xn)v = xmu

Therefore, for every x ∈ G there exists an element xu ∈ G such that

σ(xu) = xmu = x

showing that σ is surjective.

kerσ = {x ∈ G/σ(x) = e}

= {x ∈ G/xm = e}

= {x ∈ G/xmu = e}

= {x ∈ G/x = e} = {e}

showing that σ is one-one

Therefore σ is an automorphism of G

2.3.11 Example:

If G is an abelian group, then its inner automorphism group is trivial

Proof:- Given that G is an abelian group and

Ig be the inner automorphism determined by g ∈ G

That is for all g ∈ G, Ig(x) = gxg−1 ∀ x ∈ G

Ig(x) = gxg−1

= gg−1x

= x = i(x) for all x ∈ G and for any g ∈ G

Ig = i

Therefore Inn(g) = {i/i : G→ G is the identity map }

2.3.12 Example:

If G is a group of order 2 then Aut(G) is trivial

Proof:- Let G be a group of order 2 and G = {e, a}

Then Inn(G) is trivial. Since every group of order 2 is abelian.

If σ ∈ Aut(G) then σ(e) = e and σ(a) = a
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This implies that Aut(G) is trivial.

2.3.13 Example:

An abelian group with the condition that

a2 6= e for some a ∈ G, has a non trivial automorphism.

Proof:- Let G be an abelian group with the condition that a2 = e for some

a ∈ G

That is a 6= a−1

Now, define σ : G→ G by σ(x) = x−1

Clearly, σ is an automorphism, since G is abelian

Also, σ(a) = a−1 6= a

showing that σ is non identity automorphism.

Thus Aut(G) is non trivial.

2.3.14 Example:

A non abelian group G always has a non trivial automorphism. Moreover if

G is finite |Inn(G)| = [G : Z(G)]

Proof:- Let G is a non abelian group, then there exists elements a, b ∈ G

such that ab 6= ba that is aba−1 6= b

For a ∈ G we have Ia ∈ Inn(G) such that Ia(b) = aba−1 6= b

Therefore, Ia is a non identity automorphism.

Thus G has a non trivial automorphism.

Further if G is finite non abelian group then its center Z(G) is a subgroup

of G and Z(G) 6= G

Therefore |Z(G) < |G|

By Theorem 1.1.7, we have G
Z(G)

' Inn(G)

This implies |Inn(G)| = | G
Z(G)
| > 1.
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showing that there exists a non trivial (inner) automorphism and

|Inn(G)| = [G : Z(G)]

2.3.15 Example:

A finite group G having more than two elements and with the condition that

x2 6= e for some x ∈ G must have a non trivial automorphism

Solution: Given that G is a finite group. We consider two cases

Case(i): First assume that G is an abelian

Now define σ : G→ G by σ(x) = x−1 ∀ x ∈ G

Then σ is an automorphism of G

Infact

σ is a homomorphism

since σ(xy) = (xy)−1 = x−1y−1 = σ(x)σ(y) as G is abelian .

Also note that σ is one-one .

For if σ(x) = σ(y), for x, y ∈ G

x−1 = y−1

x = y

σ is onto. Since for any x ∈ G, we have x−1 ∈ G is such that

σ(x−) = (x)−1 = x

Therefore σ is non identity automorphism.

Case(ii): Now assume that G is non abelian

Define τ : G→ G by τ(g) = xgx−1

If τ(g) = τ(h)

then xgx−1 = xhx−1 ⇒ g = h

showing that τ is one-one.

For any g ∈ G consider x−1gx ∈ G
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τ(x−1gx) = x(x−1gx)x−1 = g

proving that τ is onto

Also for any g, h ∈ G,

τ(gh) = x(gh)x−1 = xgx−1xhx−1 = τ(g)τ(h)

Proving that τ ∈ Aut(G).

Therefore τ is a non trivial inner automorphism

Hence |Aut(G)| > 1, in this case also .

2.3.16 Example:

If G is an infinite cyclic group then |Aut(G)| = 2

Proof:- Given that G is an infinite cyclic group.

We know that every infinite cyclic group is isomorphic to (Z,+)

Further we have Z = < 1 > = < −1 >

Let σ : Z→ Z be an automorphism

Since 1 is a generator of Z, we have σ(1) is also a generator of Z

Thus σ(1) has two choices namely 1 and -1.

If σ1(1) = 1

For n 6= 1, σ1(n) = σ1(1 + 1 + 1 + ·+ 1) (n times)

= σ1(1) + σ1(1) + ·+ σ1(1)

= n.1 = n

Also we know that σ1(−n) = −σ1(n) = −n since σ1 is a homomorphism

This shows that σ1 = i, the identity automorphism of Z.

If σ2(1) = −1 then σ2(n) = −n ∀ n ∈ Z

Thus σ2
2 = i

Therefore |Aut(Z)| = 2

2.3.17 Example:
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Let G = [a] be a finite cyclic group of order n. Then the mapping σ defined

by a ` am is an automorphism of G if and only if (m,n)=1

Proof:- Given that G = [a] and |G| = n. Hence o(a) = n

we have σ : G→ G defined by σ(x) = xm

If (m,n)=1 then by example 2.3.10, we have σ is an automorphism

Conversely, Suppose that σ is an automorphism of G.

Then the order of σ(a) = am is same as that order of a.

That is o(am) = o(a) = n.

If (m,n)=d then ((a)m)(
n
d
) = ((a)n)(

m
d
) = e

since o(a) = n and also using the fact o(am) = n

We have n divides n
d
. This possible if d=1

Therefore, (m,n)=1

2.3.18 Example:

If G is a finite cyclic group of order n, then show that |Aut(G)| = φ(n)

where φ is Euler’s totient function.

Proof:- Let G = [a], |G| = nand σ ∈ Aut(G).

If x ∈ G then x = ak for some k ∈ N.

Now, σ(x) = σ(ak) = (σ(a))k

Therefore σ is completely known if σ(a) is known

Let σ(a) = am, m ≤ n

By example 2.3.17, we know that

σ ∈ Aut(G) if and only if (m,n)=1.

That is each positive integer less than n and relatively prime to n determines

a unique σ ∈ Aut(G) and conversely each σ ∈ Aut(G) determines a

unique positive integer m less than n and relatively prime to n.
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Therefore |Aut(G)| = |{m ∈ Z+/1 ≤ m ≤ n, (m,n) = 1} = φ(n)

2.3.19 Example:

Show that only cyclic group G of order n > 2 has an automorphism which is

not an inner automorphism

Proof: Given that G is cyclic.

Therefore G is abelian.

Hence Inn(G) is trivial.

We have |Aut(G)| = φ(n) > 1 since n > 2.

Thus G has an automorphism which is not an inner automorphism.

2.4 Summary.

In section 2.3, we have defined inner automorphism of a group and

complete group. Also we have determined the automorphism groups of a

finite cyclic group and infinite cyclic group.

2.5 Model Examination Questions.

(1) If K is the klein four group, then find Aut(G) also

determine Aut(Z2 × Z2).

(2) Let G be a group and σ : G → G is an automorphism of G. If for

a ∈ G, N(a) = {x ∈ G/xa = ax}. Then prove that N(σ(a)) = σ(N(a))

(3) Let G be the group of order 9 generated by elements a and b, where

a3 = b3 = e. Then find Aut(G).

(4) Show that Aut(Z2 × Z3) ' Aut(Z2)× Aut(Z3).

2.6 Glossary.

Automorphism, Inner automorphism, Complete group
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LESSON-03

G-SETS AND CLASS EQUATION

3.1 Introduction.

Group actions are powerful tool for proving theorems for abstract group

and for determining the structure of specific groups. The concept of an ac-

tion is a method for studying how an algebraic structure interact with other

structures. In this lesson we study the action of a group G on an arbitrary

set first then on the group itself. We deduce orbit decomposition of any ar-

bitrary set X under the action of a group G. Moreover we establish Cayley’s

theorem. Further using the conjugacy relation among the elements of a group

G, we derive class equation. This class equations has numerous applications

in studying finite groups. Also at the end of this lesson, we prove Burnside

theorem.

3.2 Action of a group on a set.

3.2.1 Definition:

Let G be a group and X is any set. Then we say that G acts on X if there

is a mapping φ : G×X → X, with φ(a, x) written as a ∗ x such that for all

a, b ∈ G, x ∈ X

(i) a ∗ (b ∗ x) = (ab) ∗ x

(ii) e ∗ x = x

The mapping φ is called the action of G on X and X is said to be a G-set.

In the above definition, we have defined the action of G on X on the

left side. In a similar manner, we can define action on the right side also.

From now onwards we restrict ourselves to groups acting on the left side only

3.2.2 Examples:

(a) Let G be any group. Take X = G. Define a ∗ x = axa−1, a ∈ G, x ∈ X
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For all a, b, x ∈ G we have

(i) a ∗ (b ∗ x) = a ∗ (bxb−1) = abxb−1a−1 = (ab)x(ab)−1 = ab ∗ x

(ii) e ∗ x = exe−1 = x

Therefore G is a G-set.

This action of the group G on itself is called conjugation.

(b) Let G be a group and X= G. Define a ∗ x = ax, a ∈ G, x ∈ G

For all a, b, x ∈ G we have

(i) a ∗ (b ∗ x) = a(bx) = (ab)x = (ab) ∗ x

(ii) e ∗ x = ex = x

Showing that G is a G-set.

This action of the group G on it self is called translation.

(c) Let G be a group and H is subgroup of G. Let X = G
H

of left cosets can

be made into a G− set by defining a ∗ xH = axH, a ∈ G, xH ∈ G
H
.

Infact, for any a, b ∈ G, xH ∈ G
H
, we have

(i) a ∗ (b ∗ xH) = a ∗ (bxH) = a(bx)H = (ab)xH = ab ∗ xH

(ii) e ∗ xH = ex

Thus G
H

is G-set.

(d) Let G be a group and H CG.

Consider G
H
, the set of left cosets of H in G.

Define a ∗ xH = axa−1H, a ∈ G, xH ∈ G
H
.

For all a, b ∈ G, xH ∈ G
H

we have

(i) a ∗ (b ∗ xH) = a ∗ (bxb−1H) = abxb−1a−1H

= abx(ab)−1H

= ab ∗ xH

(ii) e ∗ xH = exe−1H = xH
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Hence G
H

is a G-set.

3.2.3 Remark:

(i) We can also define action of G on X on the right hand side also by defining

φ : X ×G→ X with φ(x, a) written as x ∗ a satisfying

(i) (x ∗ a) ∗ b = x ∗ (ab)

(ii) x ∗ e = x ∀ a, b ∈ G, x ∈ X.

(ii) If X is a G-set, we write ax instead a ∗ x for the sake of simplicity.

3.2.4 Theorem:

Let G be a group and X is a non empty set. Then

(i) If X is a G-set, then the action of G on X induces a homomorphism

φ : G→ SX .

(ii) Any homomorphism φ : G→ SX induces an action of G onto X.

Proof: (i) Given that X is a G-set.

Therefore there is a map from G×X into X and

the image of (a, x) ∈ G×X is denoted by a ∗ x

Now, define φ : G→ SX . by φ(a)(x) = a ∗ x a ∈ G, x ∈ X

Note that φ(a) ∈ SX , the permutation group on X.

Clearly φ(a) is bijective map on X.

Let a, b ∈ G. For all x ∈ X, we have

(φ(ab))(x) = (ab) ∗ x = a ∗ (b ∗ x)

= φ(a)
(
φ(b)(x)

)
= φ(a)φ(b)(x)

⇒ φ(ab) = φ(a)φ(b) ∀ a, b ∈ G

Hence φ : G→ SX is a homomorphism that arises due to the action of G on
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X

(ii) Suppose φ : G→ SX is a homomorphism.

Define a ∗ x = (φ(a))(x) where a ∈ G, x ∈ X.

This defines a mapping whose domain is G×X and codomain is X

Now, a ∗ (b ∗ x) = φ(a)
(
φ(b)(x)

)
=
(
φ(a)φ(b)

)
(x)

= φ(ab)(x)

= ab ∗ x

since φ is homomorphism .

e ∗ x = (φ(e))(x) = x as φ(e) is the identity on X.

Therefore X is a G-set.

3.2.5 CAYLEY’S THEOREM:

Let G be a group. Then G is isomorphic into the symmetric group SG

Proof: Let G be a group. we now regard G itself as a G-set and apply the

first part of the Theorem 3.2.4

Define a ∗ x = ax, a ∈ G, x ∈ G

Clearly e ∗ x = x ∀ x ∈ G and since by associativity in G

we have a ∗ (b ∗ x) = ab ∗ x ∀ a, b, x ∈ G.

Thus G is a G-set and the action of G itself is a ∗ x = ax ∀ a ∈ G, x ∈ G

Thus by part ( i ) of the Theorem 3.2.4, this action induces a homomorphism.

φ : G→ SG where φ(a)(x) = a ∗ x = ax for all a ∈ G, x ∈ G.

Now kerφ = {a ∈ G/φ(a) = the identity of SG}

= {a ∈ G/(φ(a))(x) = i(x)∀ x ∈ G}

= {a ∈ G/ax = x ∀ x ∈ G}

= {a ∈ G/a = e} = {e}
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Showing that is φ injective

Therefore G is isomorphic into SG

Hence the theorem.

3.2.6 Remark :

An isomorphism of a group G into a group permutations is called a faithful

representation of G by a group of permutations.

The action of G on G
H

gives another representation of G by a group

of permutations, which is not necessary faithful.

3.2.7 Theorem :

Let G be a group and H is a subgroup of index n. Then there is a homomor-

phism φ : G→ Sn such that kerφ =
⋂
x∈G

xHx−1.

Proof: Given that G is a group and H is a subgroup of index n.

Let G
H

be the set of all left cosets of H in G and |G
H
| = n.

Now, define a ∗ xH = axH, a ∈ G, xH ∈ G
H

Clearly, this defines a mapping from G× G
H

into G
H

For all a, b ∈ G, xH ∈ G
H
, we have

(i) a ∗ (b ∗ xH) = a(bx)H = (ab)xH = (ab) ∗ xH

(ii) e ∗ xH = exH = xH.

Therefore G
H

is a G-set.

Thus the above action of G on G
H

induces a homomorphism

φ1 : G→ SG
H

defined by
(
φ1(a)

)
(xH) = axH

Now, kerφ1 = {a ∈ G/φ1(a) = identity of SG
H
}

= {a ∈ G/(
(
φ1(a)

)
(xH) = xH ∀ x ∈ G}

= {a ∈ G/axH = xH∀ x ∈ G}

= {a ∈ G/x−1axH = H∀ x ∈ G}
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= {a ∈ G/x−1ax ∈ H∀ x ∈ G}

= {a ∈ G/a ∈ xHx−1∀ x ∈ G}

=
⋂
x∈G

xHx−1.

But we have SG
H
' Sn sice |G

H
| = n,

Now let φ2 : SG
H
→ Sn be the isomorphism

Then let φ = φ2φ1

Further note that φ : G → Sn is a homomorphism since the composition of

homomorphisms is a homomorphism and

kerφ = {a ∈ G/φ(a) = identity of Sn}

= {a ∈ G/φ2(φ1(a)) = identity of Sn}

= {a ∈ G/φ1(a) = identity of SG
H
}

= kerφ1

Since φ2 is an isomorphism

Therefore kerφ =
⋂
x∈G

xHx−1.

3.2.8 Remark:

If H = {e}, we get the Cayley’s representation in which case it is faithful.

3.2.9 Corollary:

Let G be a group with a normal subgroup H of index n, then

G
H

is isomorphic into Sn.

Proof: From the Theorem 3.2.7, when H is a subgroup of G, there is a ho-

momorphism φ : G→ Sn with kerφ with kerφ =
⋂
x∈G

xHx−1.

Given that H CG and kerφ = H Since xHx−1 = H for all x ∈ G.

Therefore by first isomorphism theorem G
kerφ
' Im(φ)

Thus G
H

is isomorphic into Sn (where Im(φ) < Sn)

Hence the Corollary.
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3.2.10 Corollary: Let G be a simple group with a subgroup H(6= G) of a

finite index n then G is isomorphic into Sn.

Proof: Let H be a subgroup of G, H 6= G and [G : H] = n

By Theorem 3.2.7, there is a homomorphism φ : G→ Sn such that

kerφ =
⋂
x∈G

xHx−1.

Since |H| < |G|, we must have | kerφ| < |G|

We have kerφCG. Since G is simple, kerφ = {e}.

By the first isomorphism theorem G
kerφ
' Im(φ)

That is G is isomorphic into Sn

Hence the result.

3.3 Orbit and Stabilizers:

3.3.1 Definition: Orbit

Let G be a group acting on a set X and let x ∈ X. Then

the set Gx = {a ∗ x/a ∈ G} = {ax/a ∈ G} is called the Orbit of x in G.

3.3.2 Definition: Stabilizer

Let G be a group acting on a set X and let x ∈ X.

Then the set Gx = {g ∈ G/gx = x} is called the stabilizer of x in G

Some times it is called as the isotropy group of x in G

3.3.3 Lemma: Gx is a subgroup of G.

Proof: We have G is a group acting on a set X

That is for all g ∈ G, y ∈ X, we have g ∗ y ∈ X and

a ∗ (b ∗ y) = (ab) ∗ y, e ∗ y = y, ∀ a, b ∈ G and y ∈ X.

Let x ∈ X and the stabilizer of x in G is denoted by Gx and

Gx = {a ∈ G/a ∗ x = x}

Clearly Gx 6= φ and Gx ⊂ G
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For any g1, g2 ∈ Gx, we have

(g1g2) ∗ x = g1 ∗ (g2 ∗ x) = g1 ∗ x = x

x = e ∗ x = (g−11 g1) ∗ x = g−11 ∗ (g1 ∗ x) = (g−11 ∗ x)

⇒ g1g2 ∈ Gx and g−11 ∈ Gx ∀ g1, g2 ∈ Gx

showing that Gx is a subgroup of G

3.3.4 Remark:

(i) Gx ⊂ X

(ii) For any y ∈ Gx, Gx = Gy

Let y = b ∗ x, b ∈ G. Then

Gy = {a ∗ y/a ∈ G} = {a ∗ (b ∗ x)/a ∈ G}

= {(ab) ∗ x/a ∈ G}

= {c ∗ x/c ∈ G}

= Gx

(iii) If G acts on itself by translation then for x ∈ G

Gx = {a ∈ G/a ∗ x = x} = {a ∈ G/ax = x} = {e}

Gx = {a ∗ x/a ∈ G} = {ax/a ∈ G} = G

(iv) If G acts on itself by conjugation then for x ∈ G,

Gx = {a ∈ G/a ∗ x = x} = {a ∈ G/axa−1 = x}

= {a ∈ G/ax = xa}

= N(x)

In this case the stabilizer of an element x in G is the normalizer of x in G.

(v) Let H be a normal subgroup of G and consider the set G
H

The stabilizer of a left coset xH is the subgroup

GxH = {g ∈ G/gxH = xH}

= {g ∈ G/x−1gxH = H}
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= {g ∈ G/x−1gx ∈ H}

= {g ∈ G/g ∈ xHx−1}

= xHx−1

3.3.5 Conjugate Class of an element:

Let G be a group and x ∈ G, Then

C(x) = {axa−1/a ∈ G} is called the Conjugate class of x.

3.3.6 Remark:

(i) x ∈ C(x) and hence c(x) is non empty.

(ii) If G acts on itself by Conjugation then for x ∈ G

Gx = {a ∗ x/a ∈ G}

= {axa−1/a ∈ G}

= C(x)

That is the Orbit of x in G is the conjugate class of x.

Also, Gx = {a ∈ G/a ∗ x = x}

= {a ∈ G/axa−1 = x}

= {a ∈ G/ax = xa}

= N(a)

3.3.7 Theorem:

Let G be a group acting on a set X. Then the set of all Orbits in X under G

is a partition of X.

For any x ∈ X there is a bijection Gx→ G
Gx

and hence

|Gx| = [G : Gx]

Therefore if X is a finite set |X| =
∑
x∈C

[G : Gx]

where C is a subset of X containing exactly one elements from each Orbit.

Proof: Given that the group G acts on X.
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For all a, b ∈ G, x ∈ X, we have a ∗ x ∈ X satisfying

(i) a ∗ (b ∗ x) = (ab) ∗ x and

(ii) e ∗ x = x.

For every x ∈ X, we have

Gx = {a ∈ G/a ∗ x = x} is stabilizer of x

And Gx = {a ∗ x/a ∈ G} is the orbit of x.

Also note that the stabilizer Gx is a subgroup of G and Gx, the orbit of x is

a subset of X.

Now define a relation ∼ on X as follows

For x, y ∈ X, x ∼ y means x = a ∗ y for some a ∈ G.

(i) For all x ∈ X, we have x = e ∗ x⇒ x ∼ x ∀ x ∈ X

Thus ∼ is reflexive.

(ii) Suppose x ∼ y then x = a ∗ y for some a ∈ G

As y = e ∗ y = (a−1a) ∗ y

= a−1 ∗ (a ∗ y)

= a−1 ∗ x

Showing that y ∼ x

Thus ∼ is symmetric

(iii) If x ∼ y, y ∼ z then

x = a ∗ y, y = b ∗ z for some a, b ∈ G

Now (ab) ∗ z = a ∗ (b ∗ z) = a ∗ y = x

⇒ x ∼ z

Thus ∼ is transitive.

Hence ∼ is an equivalence relation on X.

Therefore ∼ partitions X into mutually disjoint equivalence classes whose
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union is X.

Let x̄ be the equivalence class of x ∈ X

Now, x̄ = {y ∈ x/y ∼ x}

= {y ∈ X/y = a ∗ x , a ∈ G}

= {a ∗ x/a ∈ G}

= Gx

= the orbit of x in G

This shows that the set of all orbits forms a partition of X and hence

X =
⋃
x∈C

Gx −→ (1)

Note that the above union is disjoint.

Where C is any subset of X containing exactly one element from each orbit.

For a given x ∈ X, define a mapping φ : Gx→ G
Gx

by

φ(a ∗ x) = aGx for all a ∈ G

Now, for any a, b ∈ G

Let a ∗ x = b ∗ x

Now (a−1b) ∗ x = a−1 ∗ (b ∗ x)

= a−1 ∗ (a ∗ x)

= (a−1a) ∗ x

= e ∗ x

= x

and (a−1b) ∗ x = x⇒ a ∗ x = a ∗ ((a−1b) ∗ x)

= (aa−1b) ∗ x

= (eb) ∗ x

= b ∗ x

Therefore a ∗ x = b ∗ x ⇔ (a−1b) ∗ x = x
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⇔ a−1b ∈ Gx

⇔ aGx = bGx

⇔ φ(a ∗ x) = φ(b ∗ x)

This shows that φ is well defined and injective.

For every left Coset aGx, there exists an element

a ∗ x ∈ Gx such that φ(a ∗ x) = aGx

Showing that φ is surjective.

Hence φ is a bijection.

Therefore, |Gx| = G
Gx

= [G : Gx] −→ (2)

Suppose X is a finite set. Then from (1) and (2)

We have |X| =
∑
x∈C

|Gx|

=
∑
x∈C

[G : Gx]

Since X is the disjoint union of orbits Gx

3.3.8 Definition:

The Orbit decomposition of a set X under a group G.

The partition P = {Gx/x ∈ C} of X under action of G on X is called the

orbit decomposition of X under G, where C is a subset of X containing ex-

actly one element from each orbit

3.3.9 Remark :

Let G be a group and a ∈ G. Recall that

(i) C(a) = {xax−1/x ∈ G} is called the conjugate class of a in G.

(ii) N(a) = {a ∈ G/xax−1 = a} is called the normalizer of a in G

3.3.10 Theorem:

Let G be a group . Then the following are true.

(i) The set of Conjugate class of G is a partition of G.
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(ii) |C(a)| = [G : N(a)]

(iii) If G is a finite set then |G| =
∑

[G : N(a)], where the summation runs

over exactly one element from each conjugate class.

Proof: Given that G is a group.

(i) Define a relation ∼ on G as follows

For, a, b ∈ G

a ∼ b ⇔ a = xbx−1 for some x ∈ G.

Now it is easy to see that the relation ∼ is an equivalence relation on G.

Therefore ∼ partitions G into mutually disjoint equivalence classes.

Let ā be the equivalence class of a ∈ G.

Then ā = {y ∈ G/y ∼ a}

= {xax−1/x ∈ G}

= C(a), the conjugate class of a

Now a ∈ C(a) since a = eae−1

Thus a ∈ C(a) ⊂ G

⇒ {a} ⊂ C(a) ⊂ G

⇒ G =
⋃
a∈C

C(a) −→ (1)

a disjoint union of conjugate classes, and C contains exactly one element

from each conjugate class.

(ii) Let a ∈ G. Define a map φ : C(a)→ G
N(a)

by φ(xax−1) = xN(a).

For every xN(a) ∈ G
N(a)

there exists x ∈ G, xax−1 ∈ N(a)

such that φ(xax−1) = xN(a).

Showing that φ is surjective.

For any x, y ∈ G

If φ(xax−1) = φ(yay−1)
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⇒ xN(a) = yN(a)

⇒ y−1x ∈ N(a)

⇒ y−1xa = ay−1x

⇒ xax−1 = yay−1

⇒ φ is injective.

Therefore φ is bijective and hence

|C(a)| = | G
N(a)
| = [G : N(a)] −→ (2)

(iii) In case if G is finite, then from (1) and(2) we have

|G| =
∑
a∈C

|C(a)| =
∑
a∈C

[G : N(a)]

where the summation is extended over exactly one element from each

Conjugate class.

3.4 The Class Equation.

Let G be any group and we know that G acts on itself by conjugation

action. Then the partition P = {c(a)/a ∈ C} of G under this conjugation

action is called the class decomposition of G and the equation

|G| =
∑

a∈C
[
G : N(a)

]
is called as the class equation of the group G Where C is a subset of G con-

taining exactly one element from each conjugate class.

3.4.1 Definition.

Let G be a group and S be a subset of G. If x ∈ G, then the set

x−1Sx = {x−1sx/s ∈ S}

is called a conjugate of S.

3.4.2 Definition.

Let S, T be two subsets of a group G. Then T is said to be conjugate to S
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if there exists x ∈ G such that T = xSx−1.

3.4.3 Remark.

The relation being ”conjugate” is an equivalence relation in the power set

P(G) of the group G.

Let ∼ be the relation conjugate to that is S, T ∈ P(G), then S ∼ T if and

only if T = xSx−1 for some x ∈ G.

Clearly for S ∈ P(G), S = eSe−1. Therefore we have S ∼ S and hence ∼ is

reflexive.

Let S, T ∈ P(G) and S ∼ T then S = xTx−1 for some x ∈ G.

Thus we have T = x−1Sx, x ∈ G.

That is x−1S(x−1)−1 = T, x−1 ∈ G.

which implies T ∼ S.

Now let S, T, U ∈ P(G) such that S ∼ T, T ∼ U .

then S = xTx−1, x ∈ G.

T = yUy−1, y ∈ G.

Therefore S = xTx−1.

= xyUy−1x−1.

= xyU(xy)−1, xy ∈ G.

showing that S ∼ U.

Hence the relation ’conjugate’ is an equivalence relation.

3.4.4 Theorem:

Let G be a group. For any subset S of G |C(S)| = [G : N(S)], where

N(S) = {x ∈ G|x−1Sx = S}

Proof.

Given that G is a group and let P(G) be its power set.
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We know that G acts as P(G) by the action ’conjugation’, given by

x ∗ S = {xSx−1 : x ∈ S} where S ⊂ G.

Define a relation ∼ on P(G) as follows. For S, T ∈ P(G), S ∼ T ⇔

S = xTx−1 for some x ∈ G.

Clearly ′ ∼′ is an equivalence relation and partitions P (G) into equivalence

classes.

P(G) =
⋃
C(S), S ⊂ G and the union is disjoint.

Now define a mapping σ : C(S)→ G
N(S)

by σ(xSx−1) = xN(S), x ∈ G.

Clearly σ is one-one.

Infact if σ(xSx−1) = σ(ySy−1), for any x, y ∈ G.

⇒ xN(S) = yN(S)

⇒ y−1xN(S) = N(S)

⇒ y−1x ∈ N(S)

⇒ y−1xS(y−1x)−1 = S

⇒ ySy−1 = xSx−1

Proving σ is one-one.

σ is onto.

For any xN(S) ∈ G
N(S)

, there exists x ∈ G and xSx−1 ∈ C(S) such that

σ(xSx−1) = xN(S) showing that σ is onto.

Therefore |C(S)| =
∣∣∣ G
N(S)

∣∣∣ =
[
G : N(S)

]
.

That is |C(S)| =
[
G : N(S)

]
.

3.4.5 Theorem.

Let G be a group and x ∈ G. Then.

(i) C(x) = {x} ⇔ x ∈ Z(G), Clearly x ∈ C(x).

(ii) x ∈ Z(G) ⇔ N(x) = G.
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(iii) x /∈ Z(G) ⇔ N(x) is a proper subgroup of G.

Proof.

Given that G is a group and x ∈ G. We have C(x) = {axa−1/a ∈ G}.

(i) First suppose C(x) = {x}.

For any a ∈ G we have axa−1 = x. That is ax = xa showing that x ∈ Z(G).

Conversely suppose that a ∈ Z(G).

Then xa = ax for all x ∈ G.

That is a = xax−1 for all x ∈ G.

Now C(x) = {axa−1/a ∈ G}

= {xaa−1/a ∈ G}

= {x}

(ii) x ∈ Z(G) ⇔ C(x) = {x}

⇔
[
G : N(x)

]
= |C(x)| = 1

⇔ N(x) = G

(iii) x /∈ Z(G) ⇔ C(x) 6= {x}

⇔
[
G : N(x)

]
= |C(x)| > 1

⇔ N(x) is a proper subgroup of G.

Hence the theorem.

3.4.6 Theorem

Let G be a finite group then

|G| = |Z(G)|+
∑
x∈C

[
G : N(x)

]
where C contains exactly one element from each conjugate class with more

than one element.

Proof.

Given that G is a finite group. We know that the relation conjugacy on G is
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an equivalence relation and it partitions G into mutually disjoint equivalent

classes. The equivalence class of an element x ∈ G is C(x), the conjugacy

class of x .

Therefore G =
⋃
x∈C′

C(x). —————-(1).

Where C
′

contains exactly one element from each conjugate class.

Also we have |C(x)| =
[
G : N(x)

]
.

On separating those conjugation classes which contains exactly one element

and those which contain more than one element and using the fact that

C(x) = {x} ⇔ x ∈ Z(G).

We have G = Z(G)
⋃ ⋃

x∈C
C(x) ————(2)

Where C contains exactly one element from each conjugate cases having more

than one element.

The equation (2) is known as the class equation for group G.

Since G is finite,

|G| = |Z(G)|+
∑
x∈C
|C(x)|.

=|Z(G)|+
∑
x∈C

[
G : N(x)

]
. —————–(3)

The equation (3) is known as the class equation for finite group G.

3.4.7 Theorem.

Let G be a finite group of order pn, where p is prime and n > 0. Then

(i) G has a non trivial centre Z(G) = Z

(ii) Z ∩N is non trivial for any non trivial normal subgroup N of G.

(iii) If H is a proper subgroup of G, then H is properly contained in N(H);

hence, if H is a subgroup of order pn−1, then H CG.

Proof.

Given that G is a group of order pn.
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The class equation of G is

|G| = pn = |Z|+
∑
x∈C

[
G : N(x)

]
————– (1)

Where Z = Z(G) and C is a subset of G exactly one element x from each

conjugate class not contained in Z.

If x /∈ Z then N(x) is a proper subgroup of G then by Lagrange’s theorem,

|N(x)|/|G| ⇒ |N(x)|
/
pn

Since N(x) 6= G, |N(x)| < pn, therefore |N(x)| = pr, r < n.[
G : N(x)

]
= |G|
|N(x)| = Pn

pr
= pn−r————-(2)

where n− r ≥ 1.

⇒ p divides
[
G : N(x)

]
because p divides right hand side of equation (2) for

each x /∈ Z.

⇒ p divides
∑
x∈C

[
G : N(x)

]
.

We have p
/
|G| and p

/ ∑
x∈C

[
G : N(x)

]
.

⇒ p
/
|Z| (from (1))

⇒ |Z| ≥ 2

⇒ Z 6= {e}

⇒ Z = Z(G) is non trivial.

(ii) We have from the class equation of G.

G = Z
⋃

(
⋃
x∈C

C(x)). (disjoint)

Let N be any non trivial normal subgroup of G.

Then N = G
⋂
N =

(
Z
⋃( ⋃

x∈C
C(x)

))⋂
N.

⇒ N = (Z ∩N)
⋃( ⋃

x∈C
C(x) ∪N

)
⇒ |N | = |Z ∪N |+

∑
x∈C

∣∣C(x) ∩N
∣∣ ————— (3)

We now prove that for any x ∈ C, C(x) ∩N = φ or C(x).

If x ∈ N then C(x) ⊂ N
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Since x ∈ N then gx = xg ∀ g ∈ G.

⇒ gxg−1 = x ∀ g ∈ G.

But C(x) = {gxg−1
/
g ∈ G}

={x}.

That is gxg−1 ∈ C(x) then gxg−1 = x ∈ N which imply C(x) ⊂ N.

And further note that x /∈ N then axa−1 /∈ N ∀ a ∈ G.

⇒ C(x) ∩N = φ

That is if x ∈ N ⇒ C(x) ⊂ N

and if x /∈ N ⇒ C(x) ∩N = φ

Hence for every x ∈ C

C(x) ∩N = φ or C(x)

|C(x) ∩N | = 0 or |C(x)|

and |C(x) ∩N | = 0 or
[
G : N(x)

]
But |c(x)| =

[
G : N(x)

]
⇒
∑

x∈C

∣∣C(x) ∩N
∣∣ =

∑
x∈C

[
G : N(x)

]
⇒ p

/∑
x∈C

[
G : N(x)

]
(by (1))

⇒ p
/∑

x∈C |C(x) ∩N |

Since N is a proper normal subgroup of G.

⇒ |N | = pr for some 0 < r < n

⇒ p
/
|N |

Then from (3), we have p
/
|Z ∩N |

⇒ |Z ∩N | ≥ 2

⇒ Z ∩N 6= {e}

⇒ Z ∩N is nontrivial for any nontrivial normal subgroup N of G.

(iii) Now let H be a proper subgroup of G.
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Let K be a maximal normal subgroup of G contained in H.

Then K is a proper normal subgroup of G and hence the quotient group G
K

os of order pr where 0 < r < n.

Then by (1) of the theorem

G
K

has a nontrivial center say L
K

Clearly K C L and K 6= L

Now L
K
C G

K
implies LCG.

(by correspondence theorem)

If L is contained in H that is L ⊂ H, then K ⊂ L ⊂ H ⊂ G which implies

K C LCG which is a contradiction to the fact that K is a maximal normal

subgroup of G. contained in H.

Hence L is not contained in H.

We now show that L ⊂ N(H).

Let h ∈ H, l ∈ L. We have L
K

is the center of G
K
.

Therefore the elements of L
K

and G
K

commute.

Hence (hK)(lK) = (lK)(hK)

⇒ hlK = lhK

⇒ h−1l−1hlK = K

⇒ h−1l−1hl ∈ K

But K ⊂ H. Thus h−1l−1hl ∈ H

⇒ l−1hl ∈ hH

⇒ l−1hl ∈ H

⇒ hl ∈ lH

⇒ Hl ⊂ lH

Similarly lH ⊂ Hl ∀ l ∈ L.
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Therefore lH = Hl ∀ l ∈ L.

⇒ l−1Hl = H ∀ l ∈ L.

⇒ l ∈ N(H).

which gives that L ⊂ N(H).

If N(H) = H then L ⊂ H, again a contradiction to L 6⊂ H.

Hence H 6= N(H)

⇒ H is properly contained in N(H).

That is H ⊂ N(H).

H ⊂ N(H) ⇒ |H| < |N(H)| and |H| divides |N(H)| when G is finite.

If H is a proper subgroup of order pn−1 that is |H| = pn−1 then |N(H)| = pn.

⇒ N(H) = G

⇒ xHx−1 = H ∀ x ∈ G

⇒ H CG.

3.4.8 Corollary

Every group of order p2 is abelian, where p is a prime.

Proof.

Let G be a group of order p2, where p is prime.

If possible assume that G is non abelian. Also by theorem 4.2.5, G has a

nontrivial center Z(G) = Z and |Z| 6= 1.

Now |Z|
/
|G| (by Lagranges theorem)

⇒ |Z|
/
p2

⇒ |Z| = p or p2. (|Z| > 1)

If |Z| = p2 then Z = G and hence G will be abelian, which is a contradiction.

Therefore |Z| = p

Let a ∈ G and a /∈ Z.
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Now x ∈ Z ⇒ xa = ax

⇒ x ∈ N(a)

Thus Z ⊆ N(a).

Also note that Z 6= N(a)

If Z = N(a) then a ∈ Z, which is not possible .

⇒ |N(a)|
/
p2.

⇒ |N(a)| = p2 some |Z| < |N(a)|

⇒ N(a) = G

⇒ ag = ga ∀ g ∈ G

⇒ a ∈ Z, which is a contradiction.

Hence G is abelian.

3.4.9 Remark.

For a fixed g ∈ G, we define Xg = {x ∈ G
/
gx = x}.

3.4.10 Burnside Theorem.

Let G be a finite group acting on a finite set X. Then the number k of orbits

in X under G is k = 1
|G|
∑
g∈G
|Xg|

Proof.

Let G be a finite group acting on a finite set X.

Let ∗ be the action of G on X that is

∗ : G×X → X is the mapping satisfying

a ∗ (b ∗ x) = (ab) ∗ x

e ∗ x = x ∀ a, b ∈ G, x ∈ X.

Let S = {(g, x) ∈ G×X
/
g ∗ x = x}

= {(g, x) ∈ G×X
/
gx = x}

For any fixed g ∈ G, we have
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Xg = {x ∈ X
/
g ∗ x = x}

={x ∈ X
/
gx = x}

For any x ∈ X we have Gx = {g ∈ G
/
g ∗ x = x}

={g ∈ G
/
gx = x}

Therefore for any fixed x ∈ X, the number of ordered pairs (g, x) in S is

exactly equal to |Gx|

Thus
∑
g∈G
|Xg| = |S| =

∑
x∈X
|Gx| —————- (1)

By theorem 3.3.7, we have

(i) X =
⋃
x∈C

Gx, where C is a subset of X containing exactly one element

from each orbit.

(ii) |Gx| =
[
G : Gx

]
= |G|
|Gx|

Therefore
∑
x∈X
|Gx| =

∑
x∈X

|G|
|Gx| (By 1)

= |G|
∑
x∈X

1
|Gx|

= |G|
∑
a∈C

∑
x∈Ga

1
|Gx|

=|G|
( ∑
a∈C

1
|Ga| + 1

|Ga| + . . . 1
|Ga|

)
(|Ga| times).

= |G|
∑
a∈C

|Ga|
|Ga|

= |G|
∑
a∈C

1

= |G|k

where k is the number of distinct orbits of X under G.

From (1),
∑
g∈G
|Xg| = |G|k

⇒ k = 1
|G|
∑
g∈G
|Xg|

Hence the theorem.

3.4.11 Example

Let G be a group containing an element of finite order n > 1 and exactly

two conjugate classes, prove that |G| = 2.
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Sol.

Let a ∈ G such that a 6= e and o(a) = n. Consider the conjugate classes {e}

and C(a) then G = {e} ∪ C(a).

Let b 6= e be any other element of G. Then b ∈ C(a) ⇒ b = gag−1 for some

g ∈ G

⇒ o(b) = o(gag−1) = o(a)

⇒ o(b) = n

Since o(a) = n

We shall show that n is a prime. Suppose m|n then n = mk for some integer

k. Consider the cyclic group G generated by a then an = e ⇒ amk = e

(ak)m = e

Let b = ak then bm = e

⇒ o(b) = m

But b ∈ C(a) ⇒ o(b) = o(a) = n

⇒ m = n

Showing that n is prime.

We shall prove that a2 = e

Suppose a2 6= e then a2 ∈ C(a)

⇒ a2 = xax−1 for some x ∈ G.

We now claim that a2
i

= xiax−i

For i = 1, we have a2 = xax−1

Showing that the result is true for i = 1.

Now assume that the result is true for i = k

a2
k

= xkax−k.

Consider a2
k+1

= a2
k
.2 = a2

k
a2
k
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= (xkax−k)(xkax−k)

= xka2x−k

= xk(xax−1)x−k

= xk+1ax−(k+1)

By induction, a2
i

= xiax−i. for i ≥ 1

On taking i = n, we have

a2
n

= xnax−n. = eae = a since xn = e

⇒ a2
n
.a−1 = e

⇒ a2
n − 1 = e

But o(a) = n therefore n
/

2n − 1

which is not possible since n is a prime.

Therefore a2 = e ∀ a ∈ G

⇒ G is abelian.

C(a) = {gag−1
/
g ∈ G} = {a}

Thus G = {e} ∪ {a} = {e, a}

proving that |G| = 2.

3.4.12 Example

Let H be a subgroup of a finite group G. Let A,B ∈ P (G), the power set

of G. Define A to be conjugate to B with respect to H. If B = hAh−1 for

some h ∈ H. Then

(i) Cojugacy defined in P (G) is an equivalence relation.

(ii) If CH(A) is the equivalence class of A ∈ P (G) (called the conjugate class

of A with respect to H),

Then

|CH(A)| =
[
H : H ∩N(A)

]
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Proof.

(i) The result is true by theorem 3.3.7 by taking X = P (G) and H to be

the group that acts on X by conjugation.

(ii) Let σ : CH(A)→ H
H∩N(A)

defined by σ(hAh−1) = h(H ∩N(A))

σ is onto : Since for every h(H ∩ N(A)) there exists h ∈ H such that

σ(hAh−1) = h(H ∩N(A))

σ is one-one:

σ(h1Ah
−1
1 ) = σ(h2Ah

−1
2 )

⇒ h1(H ∩N(A)) = h2(H ∩N(A))

⇒ H ∩N(A) = h−11 h2(H ∩N(A))

⇒ h−11 h2 ∈ N(A)

⇒ h−11 h2A = Ah−11 h2

⇒ h1Ah
−1
1 = h2Ah

−1
2

⇒ σ is one-one.

Therefore σ is bijective.

|CH(A)| =
∣∣ H
H∩N(A)

∣∣ = |H|
|H∩N(A)| = [H : H ∩N(A)]

3.5 Summary:

In section 3.2, we have defined the action of a group G on a set X and pro-

vided number of illustrations. Also we proved Cayley’s theorem. In section

3.3 we have defined the notions of orbits and stabilizers of an element in a

group G. Also we have defined the action of G on itself by conjugacy relation.

In section 3.4, we have derived the class equation of a finite group and using

this we established that every group of order p2 (p is a prime) is abelian. At

the end of this section we have proved Burnside theorem.
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3.6 Model Examination Questions.

(1). Find the number of conjugate classes of the element (1 3) in D4.

(2). Determine the number of conjugate classes of the symmetric group of

degree 3 and verify that the number of elements in each conjugate class is a

divisor of the order of group.

(3). In Sn , find the number of r-cycles.

Using this, find the number of conjugates of the r-cycle (12...r) in Sn.

(4). Find all the conjugate classes in S4.

(5) Let G be a finite group with a normal subgroup N such that (|N |, |G||N |) =

1. Show that every element order dividing |N | is contained in N .

(6) If G be a group of order 125, then prove that there exists a 6= e, a ∈ G

such that ax = xa for all x ∈ G.

(7) Show that every group of order 169 is abelian .

(8) Let G be a group, show that Z(G) =
⋃

|C(x)|=1

C(x), x ∈ G.

3.7 Glossary.

Action of a group, G-set, Orbit, Stabilizer, Conjugacy class.Class equation ,

Burnside theorem
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LESSON-04

NORMAL SERIES AND SOLVABLE

GROUPS

4.1 Introduction.

In this lesson we define normal and composition series of a group G.

Moreover we establish the equivalence of composition series of a finite group(The

Jordan-Holder theorem). Further we deduce the fundamental theorem of

arithmetic as a consequence of Jordan-Holder theorem.

The class of groups which appears in the theory of polynomial equations is

the class of solvable groups. In this lesson we also characterise solvable group.

Especially the terminology of solvability comes from the correspondence be-

tween the groups and the polynomials which can be solvable by radicals.

Here the solvability of polynomials means that there is an algebraic formula

for the roots.

4.2 Definition: Normal Series.

Let G be a group. A sequence (G0, G1 . . . Gr) of subgroups of a group

G is called a normal series (or subnormal series) of G if

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gr−1 ⊂ Gr = G

where Gi−1 is a normal subgroup of Gi, 1 ≤ i ≤ r. The quotient groups Gi
Gi−1

,

1 ≤ i ≤ r are called the factors of normal series.

4.2.1 Remark:

(i) For any group G, {e} = G0 ⊂ G1 = G is trivially a normal series of G.

(ii) Any series of subgroups of an abelian group is a normal series.

(iii) {0} ⊂ 20Z ⊂ 10Z ⊂ 5Z ⊂ Z is a normal series of Z.

4.2.2 Definition: Composition Series :

A normal series (G0, G1 . . . Gr) of a group G is said to be a composition series
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of G if its factors Gi
Gi−1

, 1 ≤ i ≤ r are all simple groups.

The factors Gi
Gi−1

, 1 ≤ i ≤ r are called composition factors of G.

4.2.3 Remarks:

(i) Gi
Gi−1

is simple if and only if there are no normal subgroups between Gi−1

and Gi, 1 ≤ i ≤ r in the composition series of G.

(ii) For any simple group G, {e} = G0 ⊂ G1 = G is the only composition

series of G.

4.2.4 Theorem:

Every finite group has a composition series.

Proof.

Let G be a finite group.

We prove the theorem by using induction on the order of G.

If |G| = 1 then G = {e} and (G) is the only composition series of G without

composition factors, proving the result in this case.

If G is a simple group, then its only normal subgroups are G0 = {e} and

G1 = G. Now we have

{e} = G0 ⊂ G1 = G, G0 CG, G
G0

is simple.

Also note that (G0, G) is the only composition series of G proving the result

in this case.

Now suppose that |G| > 1 and G is not simple and further assume that the

result is true for all groups of order less than |G|.

As G is not simple, it has at least one proper normal subgroup.

Let H be the maximal normal subgroup of G. Since |H| < |G|, by in-

duction hypothesis, H has a composition series say

{e} = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hr = H
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Also we have G
H

is simple.

Therefore

{e} = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hr = H ⊂ G is a composition series for G.

Hence the theorem.

4.2.5 Example:

For the group S3, we have

{e} ⊂ {e, (123), (132)} ⊂ S3

is a composition series where

S3 = {e, (123), (132), (12), (23), (13)}

4.2.6 Example:

We know that the Dihedral group D4 is generated by σ and τ where

σ4 = e = τ 2 and τσ = σ3τ here σ = (1234), τ =

 1 2 3 4

1 3 4 2


That is D4 = {e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ}.

For this group D4,

{e} ⊂ {e, σ2} ⊂ {e, σ, σ2, σ3} ⊂ D4 is a composition series.

Also {e} ⊂ < σ2 > ⊂ < σ2, τ > ⊂ D4 is another composition series for D4.

4.2.7 Example:

We know that the Quaternion group Q is generated by a, b with the defining

relations a4 = b4 = e, b2 = a2, b−1ab = a3.

We can write Q in terms of matrices as follows

Q =

{ 1 0

0 1

 ,

 √−1 0

0
√
−1

 ,

 0 1

−1 0

 ,

 0
√
−1

√
−1 0

 ,

 −1 0

0 −1

 ,

 −√−1 0

0
√
−1

 ,

 0 −1

1 0

 ,

 0 −
√
−1

−
√
−1 0

}
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Here e =

 1 0

0 1

 , a =

 √−1 0

0
√
−1

 , b =

 0
√
−1

√
−1 0

 .

Clearly the Quaternion group Q is of order 8 and all of its subgroups

are normal. Also nothe that the cyclic groups [a2] and [a] are subgroups of

order 2 and 4 respectively.

Further observe that

{e} ⊂ [a2] ⊂ [a] ⊂ Q

is a normal series for Q since
[

[a] : [a2]
]

= 2 = [ Q : [a] ].

Also each factor of the series is isomorphic to the cyclic group of order

2, which is simple.

Hence {e} ⊂ [a2] ⊂ [a] ⊂ Q is a composition series of Q.

4.2.8 Example:

{0} ⊂ {0, 10} ⊂ {0, 5, 10, 15} ⊂ {0, 1, 2, . . . 19} = Z
(20)

is a normal series of

Z
<20>

since Z
<20>

is an abelian group. Further the factors of this composition

series are respectively isomorphic to cyclic groups of orders 2, 2 and 5, which

are simple. Thus

S = (G0, G1, G2, G3) is a composition series of Z
<20>

where G0 = {0},

G1 = [10], G2 = [5], G3 = Z
<20>

.

Further note that S
′

= (G
′
0, G

′
1, G

′
2, G

′
3) is also a composition series of Z

<20>

where G
′
0 = [0], G

′
1 = [10], G

′
2 = [2], G

′
3 = Z

<20>
. Here the composition

factors of the series are respectively isomorphic to the cyclic groups of orders

2, 5 and 2.

4.3 Definition: Equivalence of Normal Series

Two normal series S = (G0, G1, G2 . . . Gr) and S
′

= (G
′
0, G

′
1, G

′
2, . . . G

′
r) of

G are siad to be equivalent, written S ∼ S
′
, if the factors of one series are
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isomorphic to the factors of the other after some permutation; that is,

G
′
i

G
′
i−1

' Gσ(i)
Gσ(i)−1

, i = 1, 2, . . . r

for some σ ∈ Sr.

4.3.1 Example:

The normal (composition) series S = (G0, G1, G2, G3) and S
′
= (G

′
0, G

′
1, G

′
2, G

′
3)

of Z
<20>

of the example (4.3.8) are equivalent.

G1

G0
' Z

<2>
, G2

G1
' Z

<2>
, G3

G2
' Z

<5>
and

G
′
1

G
′
0

' Z
<2>

,
G
′
2

G
′
1

' Z
<5>

,
G
′
3

G
′
2

' Z
<2>

.

Now observe that
G
′
i

G
′
i−1

' Gσ(i)
Gσ(i)−1

,

where σ =

 1 2 3

1 3 2

 ∈ S3.

Therefore we have S ∼ S
′
.

4.3.2 Lemma

The relation ’equivalence’ of normal series on the set of all normal series of

a group G is an equivalence relation.

Proof.

Let G be a group and S be the set of all normal series of G.

Let S = (G0, G1, G2 . . . Gr) S
′
= (G

′
0, G

′
1, G

′
2, . . . G

′
r), S

′′
= (G

′′
0 , G

′′
1 , G

′′
2 , . . . G

′′
r )

be elements in S .

We have ′ ∼′ the equivalence of normal series on S defined by S v S
′

if

G
′
i

G
′
i−1

' Gσ(i)
Gσ(i)−1

, 1 ≤ i ≤ r for some σ ∈ Sr.

(i) Let S be any normal series of G then clearly

Gi
Gi−1
' Gi

Gi−1
=

Gσ(i)
Gσ(i)−1

where σ(i) = i ∀ i, 1 ≤ i ≤ r.

Thus S ∼ S ∀ S ∈ S and hence ∼ is reflexive.

(ii) Now let S ∼ S
′

that is
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G
′
i

G
′
i−1

' Gσ(i)
Gσ(i)−1

, 1 ≤ i ≤ r for some σ ∈ Sr.

From this we write

Gj
Gj−1

'
G
′
σ−1(j)

G
′
σ−1(j)−1

, 1 ≤ j ≤ r

where σ(i) = j ⇔ σ−1(j) = i, σ ∈ Sr.

Showing that ′ ∼′ is symmetric.

(iii) Now let S ∼ S
′
, S

′ ∼ S”.

That is
G
′
i

G
′
i−1

' Gσ(i)
Gσ(i)−1

,

and
G”
i

G”
i−1
'

G
′
τ(i)

G
′
τ(i)−1

, 1 ≤ i ≤ r for some σ, τ ∈ Sr.

Now
G”
i

G”
i−1
'

G
′
τ(i)

G
′
τ(i)−1

' Gσ(τ(i))
Gσ(τ(i))−1

=
G(στ)i

G(στ)i−1

where στ ∈ Sr, which proves that S ∼ S”.

Therefore ′ ∼′ is transitive.

Hence ′ ∼′ is an equivalence relation on S, which completes the proof.

The equivalence of composition series as proved in the example 5.2.1 is not

a surprising result. More generally we have the following result, in case of

finite groups.

4.3.3 Theorem (Jordan-Holder theorem)

Any two composition series of a finite group are equivalent.

Proof.

Let G be a finite group.

Then G has a composition series. We prove the theorem by using induction

on |G|. Suppose the theorem is true for all groups of order less than |G|.

Now consider any two composition series of G say

S1 : {e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gr = G —————- (1)

S2 : {e} = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hs = G —————- (2)
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Now consider two cases Gr−1 = Hr−1 or Gr−1 6= Hr−1

Case(i) First let Gr−1 = Hr−1 then

S
′
1 : {e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gr−1

S
′
2 : {e} = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hr−1

That is S
′
1, S

′
2 are obtained from S1, S2 after removing G from the series S1

and S2.

Now S
′
1, S

′
2 are composition series for Gr−1.

Since |Gr−1| < |G|, we have by induction hypothesis S
′
1 ∼ S

′
2. This

implies r − 1 = s − 1 from which we get r = s and hence the composition

factors of S
′
1 are isomorphic to the composition factors of S

′
2 in some order.

In S1 and S2, we have r = s and rth composition factor in S1 and S2

is G
Gr−1

since Gr−1 = Hr−1.

Clearly the rth composition factors of S1 and S2 are isomorphic since

every group is isomorphic to itself. Therefore the composition factors of S1

are isomorphic to the composition factors of S2 in some order as the first

r − 1 composition factors of S1 and S2 are the composition factors of S
′
1, S

′
2

and rth composition factor of S1 and S2 is G
Gr−1

.

Hence S1 ∼ S2 in this case.

Case(ii) Let Gr−1 6= Hs−1, that is Gr−1 and Hs−1 are distinct maximal nor-

mal subgroups of G.

Let K = Gr−1 ∩Hs−1. Therefore K is a maximal normal subgroup of

Gr−1 and also of Hs−1 (If H,K are different maximal normal subgroups of

G, then H ∩K is a maximal normal subgroup of H and also of K)

Since |K| < |Gr−1| < G, by induction hypothesis, K has a composition

series say {e} = K0 ⊂ K1 ⊂ . . . ⊂ Kt = K.
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Now this gives two more composition series of G.

S3 : {e} = K0 ⊂ K1 ⊂ . . . ⊂ K ⊂ Gr−1 ⊂ Gr = G ———— (3)

S4 : {e} = K0 ⊂ K1 ⊂ . . . ⊂ K ⊂ Hs−1 ⊂ Hs = G ———— (4)

Also Gr−1Hs−1 is a normal subgroup of G containing Hs−1. Since

Gr−1, Hs−1 are normal subgroups of G we must have Gr−1Hs−1 = G.

Therefore by second isomorphism theorm

Hs−1

Gr−1∩Hs−1
' Gr−1Hs−1

Gr−1
.

That is Hs−1

K
' G

Gr−1

and Gr−1

Gr−1∩Hs−1
' Gr−1Hs−1

Hs−1
.

That is Gr−1

K
' G

Hs−1
.

Also recall that Ki
Ki−1

' Ki
Ki−1

since S ∼ S.

and Gr−1

Kt
= Gr−1

K
' G

Hs−1
= Gr

Hs−1

and Gr
Gr−1

= G
Gr−1

' Hs−1

K
= Hs−1

Kt
.

This shows that the composition factors of S3 and S4 are isomorphic in some

order. Therefore S3 ∼ S4.

Also by case (i) S1 ∼ S3 and S2 ∼ S4.

Note that

r=The number of composition factors of S1.

=The number of composition factors of S3.

=The number of composition factors of S4.

=The number of composition factors of S2.

=s.

we have S1 ∼ S3 and S3 ∼ S4.

Also S4 ∼ S2

Thus we have S3 ∼ S2 (since ′ ∼′ is transitive)
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Now again S1 ∼ S3, S3 ∼ S2 implies S1 ∼ S2.

Proving that any two composition series of a finite group G are equivalent.

Hence the theorem.

4.3.4 Example:

An abelian group G has a composition series if and only if G is finite.

Proof.

Let G be an abelian group.

If G is finite, then it has a composition series, since every finite group has a

composition series. Conversely suppose that G has a composition series say

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gr−1 ⊂ Gr = G

Since G is abelian, all the composition factors Gi
Gi−1

(1 ≤ i ≤ r). are abelian

and simple.

we now show that Gi
Gi−1

is a cyclic group of prime order pi (1 ≤ i ≤ r). If Gi
Gi−1

has a proper subgroup, then it is a proper normal subgroup of Gi
Gi−1

since Gi
Gi−1

is abelian.

which contradicts the fact that Gi
Gi−1

is simple. Thus Gi
Gi−1

has no proper sub-

groups.

Also we know that any non trivial simple group is cyclic and is of prime

order.

Therefore each quotient group Gi
Gi−1

(1 ≤ i ≤ r) is cycle and is of prime order

pi (say ) for 1 ≤ i ≤ r.

Now
∏r

i=1 pi =
∏r

i=1

∣∣∣ Gi
Gi−1

∣∣∣
= |G1|

G0

|G2|
|G1|

|G3|
|G2| . . .

|Gr−1|
|Gr−2|

|Gr|
|Gr−1|

= |Gr|
|G0| = |G|

Thus |G| = p1p2 . . . pr
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proving that G is a finite group.

(Further note that the composition factors of a finite abelian group G are

determined by the prime factors of |G| ).

Hence the theorem.

4.3.5 Example

If a cyclic group has exactly one composition series, then it is a p-group.

Proof.

Let G be a cyclic group of order p1p2 . . . pr where p1p2 . . . pr are primes not

necessarily distinct.

Let G = [a].

But we know that every finite cyclic group G has exactly one subgroup of

order d where d is a divisor of order of G, namely |G|.

Thus G has a unique subgroup Gi of order p1p2 . . . pi namely

Gi = [api+1pi+2...pr ] for i = 1, 2, . . . r − 1

More explicitly

G1 = [ap2p3...pr ]

G2 = [ap3p4...pr ]
...

Gr−1 = [apr ]

and Gr = G.

As a convention, we have G0 = {e}

Thus we have a composition series

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . Gr−1 ⊂ Gr = G

such that
∣∣∣ Gi
Gi−1

∣∣∣ = pi for i = 1, 2 . . . r.

Also every permutation of the prime factors of |G| determines a composition
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series.

But it is given that G has a unique composition series.

Thus this is possible if and only if p1 = p2 = . . . = pr

Therefore |G| = pr, showing that G is p− group.

4.3.6 Example Let G be a group of order pn, p is a prime. Then G has a

composition series such that all its composition factors are of order p.

Proof.

We have |G| = pn, where p is prime.

Since G is finite, G has a composition series

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gr−1 ⊂ Gr = G

where |Gi| is a power of p, 1 ≤ i ≤ r.

Therefore any composition factor Gi
Gi−1

is of order pk for some k > 0 and will

have a non trivial center since a group of prime power order has a non trivial

center.

As Gi
Gi−1

is simple, its center must be the group Gi
Gi−1

which implies Gi
Gi−1

is

abelian.

Thus each composition factor of G is simple abelian and hence is a group of

order p.

Hence the theorem.

4.3.7 Example

Give an example of two non isomorphic finite groups G which have isomor-

phic composition series.

Proof.

Consider the groups S3 and Z
<6>

Clearly these two are not isomorphic since S3 is not cyclic but Z
<6>

is cyclic
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We know that

S3 = {e, (123), (132), (12), (13), (23)}

write N = {e, (123)(132)}

Now

{e} ⊂ N ⊂ S3 is a composition series of G. Let H = {0, 2, 4}

Now N
{e} '

Z
(3)
' H
{0} .

and S3

N
' Z

(2)
' Z/(6)

H
.

Hence the result.

4.3.8 Example

The Jordan-Holder theorem implies the fundamental theorem of arithmetic.

Proof.

The fundamental theorem of arithmetic states that if n is an integer such that

n > 1 then n = p1p2 . . . pr where p1, p2, . . . pr are primes (not necessarily dis-

tinct). Further this factorization is unique in the sense that if n = q1q2 . . . qs

where q1, q2, . . . qs are primes then r = s and the pi’s are just the qi’s rear-

ranged (if necessary).

Let G be a cyclic group of order n. Suppose that n has two factorisa-

tions into primes say n = p1p2 . . . pr and n = q1q2 . . . qs. Then G has a unique

subgroup of order n = p1p2 . . . pi, 1 ≤ i ≤ r.

Thus

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gr−1 ⊂ Gr = G is a composition series of G

and the factors Gi
Gi−1

are cyclic groups of order pi (1 ≤ i ≤ r).

Similarly G has a composition series

{e} = G
′
0 ⊂ G

′
1 ⊂ G

′
2 ⊂ . . . ⊂ G

′
s = G whose composition factors are cyclic

groups of order qi (1 ≤ i ≤ s).
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But from the Jordan-Holder theorem, we know that any two composition

series of finite groups are equivalent.

Therefore, we have r = s and the composition factors Gi
Gi−1

are isomor-

phic to the composition factors
G
′
i

G
′
i−1

in some order.

Thus we have r = s and pi = qi (if hence we reorder q′is)

Hence the result.

4.4 Derived group:

Let G be a group. For any a, b ∈ G aba−1b−1 is called a commutator

in G. The subgroup of G generated by the set S of all commutators in G is

called the commutator subgroup of G or the derived group of G. It is denoted

by G
′
.

If S = {aba−1b−1/a, b ∈ G}.

Then G−1 = [S].

= the set of all possible finite products of elements of S.

= {x1x2 . . . xn/xi ∈ S, n ≥ 1}

4.4.1 Remark:

Let G be a group and G
′

be the derived group of G. Then we have the

following.

(i) G
′
CG.

(ii) G/G
′

is a abelian.

(iii) If H CG then G/H is abelian if and only if G
′ ⊂ H.

(iv) If G is abelian then G
′
= {e} where e is the identity of G.

4.4.2 Definition: nth Derived group of G

Let n be any positive integer. Then the nth derived group of a group G is

denoted by G(n) and is defined as follows.
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G(1) = G
′
, G(n) = (G(n−1))

′
, n > 1.

Clearly G(n) CG(n−1) and G(n−1)

G(n) is abelian.

(Inview of the remark 6.2.1).

4.5 definition: Solvable Group.

A group G is said to be solvable if there exists a positive integer k such

that G(k) = {e}.

4.5.1 Theorem:

Every abelian group is solvable

Proof.

Let G be an abelian group.

Let S be the set of all commutators in G that is

S = {aba−1b−1/a, b ∈ G}.

={e}

since G is abelian.

Now G
′
= the derived group of G.

=[S].

=The smallest subgroup of G generated by S.

= {e}.

This implies G
′
= {e}.

Proving that G(1) = G
′
= {e}.

Hence the abelian group G is solvable.

4.5.2 Theorem

Let G be a group G. Then every subgroup of G and every homomorphic

image of G are solvable. Conversely if N is a normal subgroup of G such

that N and G
N

are solvable then G is solvable.
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Proof.

Let G be a solvable group.

Therefore G(k) = {e} for some positive integer k.

(i) Let H be any subgroup of G

Also let S = {aba−1b−1/a, b ∈ H}.

and S = {aba−1b−1/a, b ∈ G} be the set of commutators in H and G respec-

tively.

Clearly S ⊂ S which implies S ⊂ [S].

Therefore H
′ ⊂ G

′
.

That is H(1) ⊂ G(1).

Which means that if H is a subgroup of G then the derived group H(1) is a

subgroup of G(1).

Now assume that H(i) ⊂ G(i) for some positive integer i.

Therefore H(i)
′
⊂ G(i)

′
which gives H(i+1) ⊂ G(i+1).

Hence by the principle of mathematical induction, it follows that H(n) ⊂ G(n)

for any positive integer n.

Now we have H(k) ⊂ G(k) = {e}.

Proving that every subgroup of a solvable group is solvable.

(ii) Now let φ : G → K be an epimorphism. That is φ is onto homomor-

phism.

K = φ(G), the homomorphic image of G, is a group.

Let A = {aba−1b−1/a, b ∈ G} and A = {xyx−1y−1/x, y ∈ φ(G)}.

Now for any a, b ∈ G and using the fact that φ is a homomorphism, we have

φ(aba−1b−1) = φ(a)φ(b)φ(a−1)φ(b−1)

= φ(a)φ(b)φ(a)−1φ(b)−1
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Proving that the image of commutator in G is a commutator in φ(G).

Now φ(A) = {φ(aba−1b−1)/a, b ∈ G}

={φ(a)φ(b)φ(a−1)φ(b−1)/a, b ∈ G}

=A

Since φ is surjective.

Further

φ(G
′
) = φ([A]).

={φ(x1x2 . . . xn)/ xi ∈ A, n ≥ 1}.

={φ(x1)φ(x2), . . . φ(xn)/ xi ∈ A, n ≥ 1}.

={y1y2 . . . yn/ yi ∈ A, n ≥ 1}.

=[A] = (φ(G))
′
.

Proving that φ
(
G(1)

)
=
(
φ(G)

)(1)
.

Now assume that φ
(
G(m)

)
=
(
φ(G)

)(m)
for some natural number m.

Now φ
(
G(m+1)

)
= φ

((
G(m)

)′)
=
(
φ
(
G(m)

))′
=
(
φ(G)(m)

)′
=
(
φ(G)

)m+1
.

Therefore by the principle of mathematical induction, we have

φ
(
G(n)

)
=
(
φ(G)

)(n)
for any n ≥ 1.

As G is solvable,

(φ(G))k = φ(G(k)) = φ({e}) = {e′}

where e
′

is the identity of φ(G).

Proving that φ(G) is solvable which establishes that the homomorphic image

of a solvable group is solvable.

Conversely let N CG such that N and G
N

are solvable.
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Then there exists positive integers k, l such that N (k) = {e} and
(
G
N

)(l)
= {ē}

where ē is the identity of G
N

namely N.

Let φ : G→ G
N

be the canonical homomorphism.

That is φ(x) = Nx.

Clearly φ is surjective.

That is G
N

is the homomorphic image of G under φ
(

i.e φ(G) = G
N

)
.

Now for any natural number n,

φ
(
G(n)

)
=
(
φ(G)

)(n)
.

Hence φ
(
G(l)

)
=
(
φ(G)

)(l)
=
(
G
N

)(l)
={N}.

which implies G(l) ⊂ kerφ that is G(l) ⊂ N.

From which we have φ
(
G(l)

)(k) ⊂ N (k)

Therefore
(
G(l+k)

)
⊂ {e}

Thus we have G(l+k) = {e} proving that G is solvable.

In the following theorem, we characterise the solvable groups.

4.5.3 Theorem

A group G is solvable if and only if G has a normal series with abelian fac-

tors. Further a finite group is solvable if and only if its composition factors

are cyclic groups of prime orders.

Proof

Let G be a group. We know that the derived group G
′

of G is a normal

subgroup of G and is abelian.

Also for any natural number n, we define nth derived group G(n) of a group

G as follows

G(1) = G
′
, G(n) =

(
G(n−1))′ for n > 1.
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Also as a convention we get G(0) = G.

Now G(n) CG(n−1) and G(n−1)

G(n) is abelian.

(i) First suppose that G is solvable.

Then G(k) = {e} for some natural number k.

Now

{e} = G(k) CG(k−1) CG(k−1) C . . .CG(1) CG(0) = G is a normal series of G

and the factors G(i−1)

G(i) are abelian for i = 1, 2 . . . k

Thus G has a normal series with abelian factors.

Conversely suppose that G has a normal series

{e} = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hr−1 ⊂ Hr = G

such that H(i)

H(i−1) is abelian for 1 ≤ i ≤ r.

For any a, b ∈ Hi

(aba−1b−1)Hi−1 = (aHi−1)(bHi−1)(a
−1Hi−1)(b

−1Hi−1).

=(aHi−1)(bHi−1)(aHi−1)
−1(bHi−1)

−1.

=Hi−1.

Since Hi
Hi−1

is abelian.

Therefore we have aba−1b−1 ∈ Hi−1 from which we get Hi
′ ⊂ Hi−1 for

1 ≤ i ≤ r.

Now G
′
= Hr

′ ⊂ Hr−1.

Thus by induction we have G(i) ⊂ Hr−i for 1 ≤ i ≤ r.

For i = r, we get G(r) ⊂ H0 = {e}

Hence G(r) = {e} proving that G is solvable.

(ii) Now assume that G is a finite group.

Suppose that G is a solvable group. By part (i) G has a normal series.

{e} = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hr−1 ⊂ Hr = G where each factor Hi
Hi−1

,
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1 ≤ i ≤ r is abelian.

Clearly each Hi
Hi−1

is finite and Hi−1 is the identity of Hi
Hi−1

and since each

finite group has a composition series.

In particular Hi
Hi−1

has a composition series.

Hi−1 = K0

Hi−1
⊂ K1

Hi−1
⊂ K2

Hi−1
⊂ . . . ⊂ Kn

Hi−1
= Hi

Hi−1
.

and the composition factors
Kj

/
Hi−1

Kj−1

/
Hi−1

are simple.

Further these factors are abelian since Hi
Hi−1

is abelian. Also we know that

every simple abelian group is of prime order and hence cyclic.

Therefore
Kj

/
Hi−1

Kj−1

/
Hi−1

is of prime order and thus cyclic, from which it follows

that
Kj
Kj−1

, 1 ≤ j ≤ n is of prime order and cyclic.

Further
Kj−1

Hi−1
C Kj

Hi−1
imply Kj−1 CKj for 1 ≤ j ≤ n.

Thus corresponding to the composition series of Hi
Hi−1

, we get

Hi−1 = K0 CK1 CK2 C . . .CKn = Hi

where Kj−1 CKj and
Kj
Kj−1

is of prime order and cyclic.

Now, on inserting the corresponding subgroups of Hi between Hi−1 and Hi

(1 ≤ i ≤ r) in the normal series of G, we get a composition series of G in

which each composition factor is a cyclic group of prime order.

Conversely suppose G has a composition series

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gr = G

such that each of its composition factors Gi
Gi−1

, 1 ≤ i ≤ r is cyclic of prime

order. As each composition series is a normal series and every cyclic group

is abelian, we have a normal series for the group G and each factor of this

series is abelian.
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Therefore G is solvable by the first part. Hence the theorem.

4.5.4 Example:

The symmetric group S3 is solvable.

Proof.

We know the symmetric group

S3 = {e, a, a2, b, ab, a2b}

with the defining relation a3 = e = b2, ba = a2b

Clearly N = [a] = {e, a, a2} is a cyclic subgroup of S3 of order 3.

Now we have {e} ⊂ N ⊂ S3

Clearly {e}CN and since index of N in S3 in 2 we have N C S3.

Further N
{e} ,

S3

N
are isomorphic to Z

<3>
and Z

<2>
respectively.

Thus S3 has a normal series with abelian factors and hence S3 is solvable (in

view of theorem 6.3.3)

4.5.5 Example:

The dihedral group Dn is solvable.

Proof.

We know that the dihedral group Dn is of order 2n generated by two elements

σ, τ satisfying σn = e = τ 2 and τσ = σn−1τ where σ = (12 . . . n) and

τ =

 1 2 . . . n

1 n . . . 2


Now

{e} ⊂ K =< σ >= {e, σ, σ2, . . . σn−1} ⊂ Dn

is a normal series for Dn and [Dn : K] = 2, hence K CDn.

Further note that the factors in the above series K
{e} ,

Dn
K

are cyclic groups of

orders n and 2 respectively.

Therefore Dn has normal series with abelian factors, proving that Dn is solv-
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able.

4.5.6 Example:

A group of prime power order is solvable.

Sol.

Let G be a group of order pn where p is a prime then G has composition

series such that all its composition factors are of order p. Since a group of

prime order is cyclic, G has a composition series such that all its composition

factors are cyclic groups of prime order.

Thus G is solvable.

4.5.7 Example:

If M is a minimal normal subgroup of a finite solvable group G then M is a

cyclic group of order p.

Sol.

Given that G is a finite solvable group. Therefore G has a composition series

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gn = G

whose composition factors are cyclic groups of prime orders. Since M is the

minimal normal subgroup of G we must have G1 = M in the composition

series of G. Then the composition factor M
{e} = M is a cyclic group of order

p.

Hence the result.

4.5.8 Example:

A simple solvable group is cyclic.

Proof.

Let G be a simple solvable group then {e} ⊂ G is the only normal series and

its only factor G
{e} = G is abelian thus G is a simple abelian group and this
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implies G is of prime order.

Hence G is cyclic.

4.5.9 Example:

Let A,B are groups then A×B is solvable if and only if both A,B are solv-

able.

Proof.

Given that A,B are groups. Then A × B is a group under coordinate wise

binary operation namely

(a, b).(c, d) = (ac, bd) for all (a, b), (c, d) ∈ A×B.

If e1, e2 are the identities of A,B then (e1, e2) is the identity of A×B and the

inverse of (a, b) is denoted by (a, b)−1 and is given by (a, b)−1 = (a−1, b−1).

This A×B is called as the direct product of groups A and B.

First we prove the following results.

(i) {e1} ×B C A×B

A× {e2}C A×B

(ii) {e1} ×B ' B

A× {e2} ' A

A×B
{e1}×B ' A and A×B

A×{e2} ' B.

Proof of (i) Now define a map

φ : A×B → B be φ((a, b)) = a for all (a, b) ∈ A×B.

Then clearly φ is a surjective homomorphism with kerφ = {e1} ×B.

Therefore by the first homomorphism theorem we have

A×B
{e1}×B ' B

Similarly A×B
A×{e2} ' A.

From the above it is clear that {e1} ×B C A×B and A× {e2}C A×B.
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Proof of (ii) Define the map

ψ : {e1} ×B → B by ψ((e1, b)) = b for all (e1, b) ∈ {e1} ×B.

Observe that ψ is an isomorphism.

Hence {e1} ×B ' B.

Similarly A× {e1} ' A.

Proof of the example:

First suppose that A×B is solvable. Note that A and B are homomor-

phic images of A × B under the homomorphisms (a, b) 7→ a and (a, b) 7→ b.

Now it follows that A,B are solvable, since every homomorphic image of a

solvable group is solvable.

Conversely suppose that A,B are solvable. Now we have to show A × B is

solvable.

As {e1} ×B C A×B, {e1} ×B ' B and A×B
{e1}×B ' A.

Since A,B are solvable, it follows that {e1} ×B, A×B
{e1}×B are solvable.

Therefore A×B is solvable (in view of theorem 4.5.3 ).

4.6 Summary

In this lesson, we have introduced the notion of normal series and com-

position series. Also we have established that any two composition series

of a finite group are equivalent. Further we have deduced the fundamental

theorem of arithmetic as a consequence of Jordan-Holder theorem.

In section 4.4, we have defined the derived group. In section 4.5, we have

introduced the notion of solvable group and characterized solvable groups.

Also at the end of the section, we have established that the direct product

(external direct product) of two solvable groups is solvable.
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4.10 Model Examination Questions

(1) Write down a composition series for the Klein four group.

(2) Find all composition series for Z
<30>

. Show that they are equivalent.

(3) If G is a cyclic group such that |G| = p1p2 . . . pr where p′is are distinct

primes, then show that the number of distinct composition series of G is r!

(4) Let G be a finite group and N C G. Show that G has a composition

series in which N appears as a term.

(5) Find the composition factors of the additive group of integers modulo 8.

4.11 Glossary

Normal series, Composition series, Equivalence of composition series, Jordan-

Holder theorem,Derived group, Solvable group, Direct product.
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LESSON-05

NILPOTENT GROUPS

5.1 Introduction.

In this lesson we define nilpotent group and establish that every group

of prime power order is nilpotent.

5.2 Definition: Center of a group

Let G be a group. We know that the center of group is denoted by Z(G)

and is defined as Z(G) = {x ∈ G/xg = gx ∀g ∈ G}.

Clearly Z(G) is an abelian subgroup of G and further Z(G) is also normal

in G.

Recall that Z(G) = G if and only if G is abelian.

5.3 The nth center of a group.

We define nth center of a group G inductively as follows

For n = 1, let Z1(G) = Z(G) clearly Z1(G) CG.

Now consider the quotient group G
Z1(G)

.

The center Z
(

G
Z1(G)

)
of G

Z1(G)
is again a normal subgroup of G

Z1(G)
.

That is Z
(

G
Z1(G)

)
C G

Z1(G)
.

Now there is a unique normal subgroup Z2(G) of G such that

Z
(

G
Z1(G)

)
= Z2(G)

Z1(G)
.

Hence Z2(G)
Z1(G)

C G
Z1(G)

.

Continuing in the above manner, we have a unique normal subgroup Zn(G)

of G such that

Zn(G)
Zn−1(G)

= Z
(

G
Zn−1(G)

)
for every natural number n > 1 and Zn(G) is
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called as the nth center of G.

Thus we have Zn(G)
Zn−1(G)

= Z
(

G
Zn−1(G)

)
for any natural number n > 1.

For n = 0, we set Z0(G) = {e}.

5.3.1 Remark:

Observe that (Zn(G))
′ ⊂ Zn−1(G).

From the definition of Zn(G),

Zn(G) = {x ∈ G/Zn−1(G)xZn−1(G)y = Zn−1(G)yZn−1(G)x ∀y ∈ G}.

={x ∈ G/Zn−1(G)xyx−1y−1 = Zn−1(G) ∀y ∈ G}.

={x ∈ G/xyx−1y−1 ∈ Zn−1(G) ∀y ∈ G.

We have (Zn(G))
′
= the derived group of Zn(G).

= [S].

where S = {xyx−1y−1/x, y ∈ Zn(G)}.

From the above S ⊂ Zn−1(G).

Therefore showing that (Zn(G))
′ ⊂ Zn−1(G).

5.3.2 Definition: The upper central series of G

The ascending series

{e} = Z0(G) ⊂ Z1(G) ⊂ Z2(G) ⊂ . . . ⊂ Zn−1(G) . . . ⊂ Zn(G) ⊂ . . .

of subgroups of a group G is called the upper central series of G.

5.4 Definition: Nilpotent Group

A group G is said to be nilpotent if Zm(G) = G for some natural number m.

The smallest m such that Zm(G) = G is called the class of nilpotency of G.

5.4.1 Example :

(1) Every abelian group G is a nilpotent group of class 1 since

Z1(G) = Z(G) = G

5.4.2 Theorem:
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A group of order pn (p is a prime) is nilpotent.

Proof.

Let G be a group and |G| = pn where p is a prime and n is a natural number.

We know that G has a nontrivial center Z1(G). Therefore |Z1(G)| > 1. Now

the quotient group G
Z1(G)

is of order pr, where r is a natural number with

r < n and r has a nontrivial center Z2(G)
Z1(G)

.

Further
∣∣Z2(G)
Z1(G)

∣∣ > 1.

which implies |Z2(G)|
|Z1(G)| > 1.

From which it follows that |Z1(G)| < |Z2(G)|.

Continuing in the above manner, after a finite number of steps, we get

|Zm(G)| = pn for some m ≤ n.

Hence we have Zm(G) = G

Showing that G is nilpotent.

5.4.3 Theorem

A group G is nilpotent if and only if G has a normal series.

{e} = G0 ⊂ G1 ⊂ . . . ⊂ Gm = G

such that Gi
Gi−1
⊂ Z

(
G

Gi−1

)
for all i = 1, 2, . . .m.

Proof.

Let G be a group. For any natural number n, the nth center of G is denoted

by Zn(G) is a normal subgroup of G such that Zn(G)
Zn−1(G)

= Z
(

G
Zn−1(G)

)
where

Z0(G) = {e}. Also we have Zn−1(G) C Zn(G) and G has a upper central

series

{e} = Z0(G) ⊂ Z1(G) ⊂ Z2(G) ⊂ . . . ⊂ Zn−1(G) . . . ⊂ Zn(G) ⊂ . . .

First suppose that G is a nilpotent group of class m where m is a natural

number then
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{e} = Z0(G) ⊂ Z1(G) ⊂ Ze(G) ⊂ . . . ⊂ Zm−1(G) . . . ⊂ Zm(G) = G

is the required normal series with the stated condition.

Conversely suppose that G has a normal series

{e} = G0 ⊂ G1 ⊂ G2 . . . ⊂ Gm = G

such that Gi
Gi−1
⊂ Z

(
G

Gi−1

)
, 1 ≤ i ≤ m

We now claim that Gi ⊂ Zi(G).

We prove this by induction on i.

For i = 1, we have G1

G0
= G1

{e} ⊂ Z
(

G
{e}

)
i.e. G1 ⊂ Z1(G)

We assume that Gi−1 ⊂ Zi−1(G).

From the condition Gi
Gi−1
⊂ Z

(
G

Gi−1

)
For every x ∈ Gi, y ∈ G,

We have Gi−1xGi−1y = Gi−1yGi−1x

which imply xyx−1y−1 ∈ Zi−1(G).

Thus we have x ∈ Zi(G). (By remark 7.4.1)

Proving that Gi ⊂ Zi(G).

Now for i = m, we have

G = Gm ⊂ Zm(G)

giving that Zm(G) = G.

which shows that G is nilpotent, completing the proof of the theorem.

5.4.4 Corollary.

Every nilpotent group is solvable.

Proof.

Let G be a nilpotent group of class m so that Zm(G) = G.

By the above theorem 7.6.3, G has a normal series.

82



{e} = Z0(G) ⊂ Z1(G) ⊂ Z2(G) ⊂ . . . ⊂ Zm(G) = G.

where Zi(G)
Zi−1(G)

= Z
(

G
Zi−1(G)

)
, 1 ≤ i ≤ m.

Since the center is always abelian, all the factors of the above normal series

are abelian. Thus G has a normal series with abelian factors.

Hence G is abelian.

5.4.5 Remark.

The converse of the above result is not true. That is every solvable group is

not nilpotent.

As an example we have the following

Consider S3, the symmetric group on 3 symbols.

We know that Z(S3) = {e} that is Z1(S3) = {e}

Also Z2(S3)
Z1(S3)

= Z
(

S3

Z1(S3)

)
= Z

(
S3

{e}

)
= Z(S3) = {e}.

which imply Z2(S3) = {e} 6= S3.

Continuing in the same manner Zm(S3) 6= S3 for no positive integer m.

Therefore S3 is not nilpotent.

5.4.6 Remark.

We observe the following

cyclic groups ⊂ abelian groups ⊂ nilpotent groups ⊂ solvable groups ⊂ all

groups.

Note that all the above containments are proper.

5.4.7 Theorem

Let G be a nilpotent group. Then

(i) Every subgroup of G is nilpotent.

(ii) Every homomorphic image of G is also nilpotent.

Proof.
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Let G be a nilpotent group of class m, that is m is the least positive integer

such that Zm(G) = G.

(i) Let H be a subgroup of G.

We now show that Zm(H) = H.

Recall that Zn(G) =
{
x ∈ G

/
xyx−1y−1 ∈ Zn−1(G) ∀y ∈ G

}
.

For every x ∈ H ∩ Z1G we have xg = gx for all g ∈ G. From which we get

xh = hx for all h ∈ H which imply x ∈ Z1(H).

Proving that H ∩ Z1(G) ⊂ Z1(H). ————————— (1)

Again for any x ∈ H ∩ Z2(G) and for all y ∈ H we have x ∈ H and y ∈ H

and x ∈ Z2(G).

Now xyx−1y−1 ∈ H and xyx−1y−1 ∈ Z1(G).

Thus xyx−1y−1 ∈ H ∩ Z1(G).

Hence xyx−1y−1 ∈ Z1(H) for all y ∈ H.

Therefore x ∈ Z2(H).

Proving that H ∩ Z2(G) ⊂ Z2(H).————————— (2)

Continuing in the same manner, we get

H ∩ Zi(G) ⊂ Zi(H), 1 ≤ i ≤ m.

Now H = H ∩G = H ∩ Zm(G) ⊂ Zm(H).

Hence proving that Zm(H) = H since Zm(H) ⊂ H.

which shows that H is nilpotent.

(ii) Now let φ : G→ K be a surjective homomorphism. That is let K = φ(G)

be the homomorphic image of G under φ.

Let x ∈ Z1(G). Then xyx−1y−1 = e forall y ∈ G.

As φ(x) ∈ φ(Z1(G)) we have φ(xyx−1y−1) = φ(e) for all φ(y) ∈ K.
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That is φ(x)φ(y)φ(x)−1φ(y)−1 = e
′
, φ(y) ∈ K

which proves φ(x) ∈ Z1(K) since φ is surjective.

Thus showing that φ(Z1(G)) ⊂ Z1(K).

Also for any x ∈ Z2(G), we have xyx−1y−1 ∈ Z1(G) for all y ∈ G.

Thus φ(x)φ(y)φ(x)−1φ(y)−1 ∈ φ(Z1(G)) for all φ(y) ∈ K.

which implies φ(x) ∈ Z2(K) since φ(Z1(G)) ⊂ Z1(K) proving that φ(Z2(G)) ⊂

Z2(K).

Repeating the same argument, we obtain

φ(Zi(G)) ⊂ Zi(K), 1 ≤ i ≤ m.

Now K = φ(G) = φ(Zm(G)) ⊂ Zm(K).

Hence Zm(K) = K since Zm(K) ⊂ K.

Proving that K = φ(G) is nilpotent.

Thus every homomorphic image of a nilpotent group is nilpotent.

Hence the theorem.

5.4.8 Theorem:

Let H and K are nilpotent groups then H ×K is nilpotent.

Proof.

Let H and K be nilpotent groups of class m and n respectively, that is m

and n are the least positive integers such that Zm(H) = H and Zn(K) = K.

Without loss of generality, we may assume that m ≤ n. Therefore we have

Zn(H) = H and Zn(K) = K.
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Now,

Z(H ×K) =
{

(h, k) ∈ H ×K
/

(h, k)(x, y) = (x, y)(h, k) ∀ (x, y) ∈ H ×K.
}
.

=
{

(h, k) ∈ H ×K
/
hx = xh and ky = yk ∀ x ∈ H, y ∈ K

}
.

=
{

(h, k) ∈ H ×K
/
h ∈ Z(G), k ∈ Z(K).

}
.

= Z(H)× Z(K).

Proving that Z1(H ×K) = Z1(H)× Z1(K).

Also

Z2(H ×K) =
{

(h, k) ∈ H ×K
/

(h, k)(x, y)(h, k)−1(x, y)−1 ∈ Z1(H ×K) ∀(x, y) ∈ H ×K
}
.

=
{

(h, k) ∈ H ×K
/

(hxh−1x−1, kyk−1y−1) ∈ Z1(H)× Z1(K) ∀x ∈ H, y ∈ K
}
.

=
{

(h, k) ∈ H ×K
/
hxh−1x−1 ∈ Z1(H) ∀x ∈ H, kyk−1y−1 ∈ Z1(K) ∀y ∈ K

}
.

=
{

(h, k) ∈ H ×K
/
h ∈ Z2(H), k ∈ Z2(K)

}
.

= Z2(H)× Z2(K).

Continuing in the same manner, we get

Zi(H ×K) = Zi(H)× Zi(K), 1 ≤ i ≤ n.

Hence Zn(H ×K) = Zn(H)× Zn(K) = H ×K.

Proving that H ×K is nilpotent.

5.4.9 Corollary.

Let H1, H2, . . . Hn be any n nilpotent groups. Then H1 × H2 × . . . × Hn is

also nilpotent.

Proof.

Given that H1, H2, . . . Hn are nilpotent groups.
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We now prove that H1 ×H2 × . . .×Hn is nilpotent by induction on n.

For n = 2, the result follows from the theorem 7.4.8

Now suppose that the theorem is true when the number of groups is less than

n.

Therefore, H = H1 ×H2 × . . .×Hn−1 is nilpotent.

Now H ×Hn is nilpotent by the theorem 7.4.8 which proves that

H ×Hn = H1 ×H2 × . . .×Hn−1 ×Hn is nilpotent.

Hence the theorem.

5.4.10 Example.

Give an example of a group G such that G has a normal subgroup N with

both N and G
N

are nilpotent but G is not nilpotent.

Sol.

We have S3, the symmetric group on three symbols

That is S3 = {e, a, a2, b, ab, a2b} with the defining relations a3 = e = b2,

ba = a2b.

Let N = [a] = {e, a, a2}

Clearly N C S3 and S3

N
' Z

<2>

Further observe that N, S3

N
are nilpotent but S3 is not nilpotent.

5.5 Summary

In section 5.3 we have defined nth center of a group G. In section 5.4

the notion of nilpotent group introduced. At the end of section, we have

proved the direct product of finite number of nilpotent groups is nilpotent.

5.6 Model Examination Questions

(1) Find the upper central series of A4 and S4.

(2) Show that D4 is nilpotent of class 2.
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(3) Show that Sn is not nilpotent for n ≥ 3.

(4) Show that if G
Z(G)

is nilpotent then G is nilpotent.

5.7 Glossary

Upper cental series of a group, Nilpotent group, Class of nilpotency.
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UNIT-II

LESSON-06

DIRECT PRODUCTS

6.1 Introduction

In this lesson the internal direct product (sum) of a finite number of sub-

groups of a group is introduced through a set of necessary and sufficient

conditions. If a group G is isomorphic to the direct product of finite number

of subgroups whose structures are known the structure of G can be generally

determined.

6.2 Direct Product of Groups

6.2.1 Definition : Let G1, G2, . . . , Gn be groups then the cartesian prod-

uct G1 × G2 × . . . × Gn is a group under the point wise binary opera-

tion (g1, g2, . . . , gn)(g
′
1, g

′
2, . . . , g

′
n) = (g1g

′
1, g2g

′
2, . . . , gng

′
n) where gi, g

′
i ∈ Gi,

1 ≤ i ≤ n. If ei is the identity of Gi then (e1, e2, . . . , en) is the identity of

G1 × G2 × . . . × Gn and (g−11 , g−12 , . . . , g−1n ) is the inverse of (g1, g2, . . . , gn).

This group is called the external direct product of groups G1, G2, . . . , Gn.

6.2.2 Theorem : Let H1, H2, . . . , Hn be a family of subgroups of a group

G and let H = H1H2 . . . Hn. Then the following are equivalent.

(i) H1 × H2 × . . . × Hn w H under the cononical mapping that sends

(x1, x2, . . . , xn) to x1x2 . . . xn.

(ii) Hi B H and every element x ∈ H can be uniquely expressed as x =

x1x2 . . . xn where xi ∈ Hi, 1 ≤ i ≤ n.

(iii) Hi BH and if x1x2 . . . xn = e then xi = e for each i.

(iv) Hi BH and Hi ∩ (H1H2 . . . Hi−1Hi+1 . . . Hn) = (e), 1 ≤ i ≤ n.

Proof. (i)⇒ (ii). Assume that (i) is true.
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We have H1 × H2 × . . . × Hn w H under the canonical map σ defined by

σ(x1, x2, . . . , xn) = x1x2 . . . xn where xi ∈ Hi, 1 ≤ i ≤ n.

Let H
′
i = {(e, . . . , hi, . . . , e)|hi ∈ Hi} then for each x = (x1, x2, . . . , xn) ∈

H1 × H2 × . . . × Hn, it is easy to see that xH
′
ix
−1 = H

′
i . This shows that

H
′
i BH1×H2× . . .×Hn. Also σ : H

′
i → Hi defined by σ((e, . . . , hi, . . . , e)) =

e . . . hi . . . e = hi ∀ hi ∈ Hi. Clearly σ is bijective and is a homomor-

phism. Hence H
′
i w Hi. Now H

′
i w Hi, H

′
i B H1 × H2 × . . . × Hn and

H1 × H2 × . . . × Hn w H ⇒ Hi B H. Suppose x ∈ H has two represen-

tations x = x1x2 . . . xn = x
′
1x
′
2 . . . x

′
n where xi, x

′
i ∈ Hi(1 ≤ i ≤ n) then

σ(x1, x2, . . . , xn) = σ(x
′
1, x

′
2, . . . , x

′
n) ⇒ x1x2 . . . xn = x

′
1x
′
2 . . . x

′
n (σ is 1 − 1)

⇒ xi = x
′
i for i = 1, 2, . . . , n. Therefore each element x ∈ H is uniquely

written as x = x1x2 . . . xn, xi ∈ Hi 1 ≤ i ≤ n.

(ii)⇒ (iii). Assume that (ii) is true.

Let x1x2 . . . xn = e = ee . . . e⇒ xi = e, 1 ≤ i ≤ n. (by unique representation)

(iii)⇒ (iv). Assume that (iii) is true.

We first prove that Hi ∩Hj = {e}, i 6= j. If xi ∈ Hi ∩Hj then e = xix
−1
i ∈

HiHj. By (iii) xix
−1
i = e ⇒ xi = e = x−1i . Thus Hi ∩ Hj = {e}, i 6= j.

Let x ∈ Hi, y ∈ Hj, i 6= j. Since Hi, Hj are normal subgroups of H then

xyx−1 ∈ Hj and yxy−1 ∈ Hi. Further xyx−1y−1 ∈ Hi and xyx−1y−1 ∈ Hj,

therefore xyx−1y−1 = e, since Hi ∩ Hj = {e}, i 6= j ⇒ xy = yx ∀ x ∈

Hi, y ∈ Hj. Let xi = x1 . . . xi−1xi+1 . . . xn, where xi ∈ Hi, 1 ≤ i ≤ n this

implies that e = x−1i x1 . . . xi−1xi+1 . . . xn = x1x2 . . . xi−1x
−1
i xi+1 . . . xn by the

commutation of the elements of Hi and Hj, i 6= j. By (iii) we get xi = e,

1 ≤ i ≤ n. Thus Hi ∩ (H1 . . . Hi−1Hi+1 . . . Hn) = {e}, 1 ≤ i ≤ n

(iv)⇒ (i). Assume that (iv) is true.
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We first note that xy = yx ∀ x ∈ Hi, y ∈ Hj, i 6= j.

Define a map σ : H1×H2× . . .×Hn → H by σ(x1, x2, . . . , xn) = x1x2 . . . xn.

Clearly the map σ is surjective.

σ is homomorphism: For all (x1, x2, . . . , xn) and (y1, y2, . . . , yn) ∈ H1 ×

H2×. . .×Hn then we have σ(x1, x2, . . . , xn) = x1x2 . . . xn and σ(y1, y2, . . . , yn) =

y1y2 . . . yn

σ

(
(x1, x2, . . . , xn)(y1, y2, . . . , yn)

)
= σ(x1y1, x2y2, . . . , xnyn)

= x1y1x2y2 . . . xnyn

= x1x2 . . . xny1y2 . . . yn(by the commutation)

= σ(x1, x2, . . . , xn)σ(y1, y2, . . . , yn)

Thus σ is a homomorphism. Now

kerσ = {(x1, x2, . . . , xn)|σ(x1, x2, . . . , xn) = e}

= {(x1, x2, . . . , xn)|x1x2 . . . xn = e}

= {(x1, x2, . . . , xn)|x−1i = x1x2 . . . xi−1xi+1 . . . xn, 1 ≤ i ≤ n}

= {(x1, x2, . . . , xn)|xi = e, 1 ≤ i ≤ n} by (iv)

= {(e, e, . . . , e)}

σ is injective. Therefore H1 ×H2 × . . .×Hn ' H.

6.3 Internal Direct Product

6.3.1 Definition : Let H1, H2, . . . , Hn be subgroups of a group G and let

H = H1H2 . . . Hn then we say that H is the internal direct product of Hi,

1 ≤ i ≤ n if the subgroup Hi satisfy any one of the statement of the theorem
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(8.2.2).

It may be noted that the external direct product H1 × H2 × . . . × Hn

always exists, where as the internal direct product of Hi, 1 ≤ i ≤ n exists

if and only if the canonical map H1 × H2 × . . . × Hn → H1H2 . . . Hn is an

isomorphism.

The emphasis of the words internal and external may be dropped if the

subgroups Hi, 1 ≤ i ≤ n satisfy any one of the condition of theorem (6.2.2).

6.3.2 Direct Sum : If G is an additive group and Hi (1 ≤ i ≤ n) are

subgroups of G then the (internal) direct product of subgroups Hi of G is

called the direct sum of Hi and is also written as H1 ⊕H2 ⊕ . . .⊕Hn.

6.3.3 Example : If each non identical element of a finite group G is of

order 2 then |G| = 2n and G w C1×C2× . . .×Cn, where each Ci (1 ≤ i ≤ n)

is cyclic group of order 2.

Solution. Given that G is a finite group and each element x ∈ G, x 6= e is

of order 2. Therefore x = x−1 ∀ x ∈ G. For all a, b ∈ G we have ab ∈ G

and ab = (ab)−1 = b−1a−1 = ba. Hence G is abelian. Let a1 ∈ G, a1 6= e and

C1 = [a1]. If G = C1 then the result is true. Otherwise there exist an element

a2 ∈ G, a2 /∈ C1. Let C2 = [a2], consider the product C1C2, clearly C1C2 is a

subgroup of G (since G is abelian), C1∩C2 = {e} and |C1C2| = |C1||C2| = 22.

Further C1 and C2 are normal in C1C2. On using theorem (8.3)(iv) we get

C1C2 w C1 × C2. Thus the product is the direct product. If G = C1C2

then |G| = 22 and G w C1 × C2. Thus, the result follows. Otherwise C1C2

is a proper subgroup of G. This process continues and ultimately, we get

G = C1C2 . . . Cn where Ci = [ai], 1 ≤ i ≤ n. Observe that each Ci is normal

in G (since G is abelian) and Ci∩(C1C2 . . . Ci−1Ci+1 . . . Cn) = {e}, 1 ≤ i ≤ n.
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By the theorem (8.2.2)(iv) we get C1C2 . . . Cn w C1 × C2 × . . .× Cn. Hence

the result.

6.3.4 Example : A group G of order 4 is either cyclic group or G w C1×C2

a direct product of two cyclic groups Ci, i = 1, 2 each of order 2.

Solution. Given |G| = 4 then by Lagranges theorem the order of every

element a(a 6= e) of G divides 4 ⇒ O(a) = 4 or 2. In the case of O(a) = 4

we get G = [a] a cyclic group. If O(a) = 2, so every non identity element of

G is of order 2. Let C1 = [a] and C2 = [b], where b 6∈ C1. Hence G w C1×C2

by the above Example (8.3.3).

6.3.5 Note : Every group of order 4 is either cyclic group or isomorphic

to klein’s four group.

6.3.6 Example : Let G be a finite group of order pq, where p, q are

district primes and if G has a normal subgroup H of order p and a normal

subgroup K of order q then G is cyclic.

Solution. Given |G| = pq, where p and q are distinct primes. HBG,KBG

and |H| = p, |K| = q. By Lagrange’s theorem |H ∩ K| divides both |H|

and |K|. Since p and q are distinct primes we get |H ∩ K| = 1.Therefore

H ∩K = {e}.

Let h ∈ H, k ∈ K and H,K are normal in G we get hkh−1k−1 ∈ H ∩

K ⇒ hk = kh (H ∩ K = {e}). Thus HK is a subgroup of G. Further

|HK| = |H||K|
H∩K| = pq = |G|. Thus G = HK. Clearly H BHK, K BHK and

HK w H×K by 8.3(iv). Since p, q are primes then H and K are cyclic. Let
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H = [h], K = [k] then

(hk)pq = (hk)(hk) . . . (hk) (pq times )

= (hh . . . h)(kk . . . k)

= hpqkpq

= (hp)q(kq)p

= e ⇒ G =< hk >

G is generated by hk. Thus G is cyclic and G = H ×K. Hence the result.

6.3.7 Example : If G is cyclic group of order mn, where (m,n) = 1 then

G ' H×K, where H and K are subgroup of G orders m and n respectively.

Solution. G is a cyclic group of order mn and (m,n) = 1. Since m and n

divides |G| and G is cyclic group there exist unique subgroups H and K of

G order m and n respectively. (If G is a finite cyclic group of order n and

d is a positive divisor of n then G has a unique subgroup of order d). By

Lagrange theorem |H ∩K| divides both |H| and |K|, so |H ∩K| = 1 since

(m,n) = 1. Therefore H ∩ K = {e} and |HK| = |H||K|
H∩K| = mn = |G|, thus

G = HK. Since G is cyclic group then H and K are normal in G = HK

and using theorem (8.3) we get HK ' H ×K. Hence G ' H ×K.

6.3.8 Example : If G is a finite cyclic group of order n = pe11 p
e2
2 . . . pekk ,

where pi’s are distinct primes 1 ≤ i ≤ k. Then G ' H1 × H2 × . . . × Hk,

where Hi is a cyclic group order pi, 1 ≤ i ≤ k.

Solution. Given that G is a finite cyclic group and |G| = n = pe11 p
e2
2 . . . pekk ,

where pi’s are distinct primes and ei’s are natural numbers 1 ≤ i ≤ k. We

shall prove the result by induction on n, the order G. Assume that the result
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is true for all groups whose order is less than n. We have |G| = n = mpekk ,

where m = pe11 p
e2
2 . . . p

ek−1

k−1 . Now (m, pekk ) = 1 and using Example (8.10) we

get G ' H × Hk, where H and Hk are cyclic subgroups of G of orders

m and pekk respectively. Since |H| = m < n, by induction of hypothe-

sis H ' H1 × H2 × . . . × Hk−1, where Hi is a cyclic group of order peii ,

1 ≤ i ≤ k − 1. Thus G ' H ×Hk. Hence G ' H1 ×H2 × . . .×Hk−1 ×Hk.

6.3.9 Example : Show that the group (Z/(4),+) cannot be written as

the direct sum of two non-trivial subgroups.

Solution. Assume that Z/(4) is the direct sum of two non-trivial subgroups

H and K then each of H and K must be of order 2 and H ∩K ={0̄}. Since

Z/(4) has a unique subgroup {0̄, 2̄} of order 2 then H = K = {0̄, 2̄}. This is

not possible since H ⊕K = H 6= Z/(4). Hence (Z/(4),+) cannot be written

as a direct sum of two non-trivial subgroups.

6.3.10 Example: Show that the group Z/(10) is a direct sum of H = {0̄, 5̄}

and K = {0̄, 2̄, 4̄, 6̄, 8̄}.

Solution. We known that the group Z/(10) is abelian. Note that H =

[5̄], K = [2̄].

H and K are normal of Z/(10) and H ∩ K = {0̄}. Further H ⊕ K =

{0̄, 2̄, 4̄, 6̄, 8̄, 5̄, 7̄, 9̄, 1̄, 3̄} = Z/(10). Therefore Z/(10) is the (internal) direct

sum of H and K.

6.4 Summary

In this lesson we have introduced the notion of direction product of a finite

number of subgroups of a group. Also we have defined internal direct prod-

uct and direct sum. At the end of this section we given examples.

6.5 Model Examination Questions
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(1) Show that the group Z/(8) cannot be written as the direct sum of two

nontrivial subgroups.

(2) Let N / G = H ×K. Prove that either N is a abelian or N intersects

one of the subgroups H × {e}, {e} ×K nontrivially.

6.6 Glossary

Direct product, internal direct product, direct sum
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LESSON-07

FINITELY GENERATED ABELIAN

GROUPS AND THE INVARIANT OF A

FINITE ABELIAN GROUP

7.1 Introduction : In this lesson we study that any finitely generated

abelian group can be decomposed as a finite direct sum of cyclic groups. This

decomposition, when applied to finite abelian groups, enables us to find the

number of nonisomorphic abelian groups of a given order.

Let G be a group and S be a subset of G. Let G be the family of sub-

groups of G containing S. let M = ∩A, where the intersection is taken over

all subgroups A of G . Clearly M is the smallest subgroup of G containing S

or M is called the subgroup of G generated by S and we write M = [S]. If

S is empty then M = {e}.

If S is a nonempty subset of G then M = [S], the subgroup generated

by S, is the set of finite product x1x2 . . . xn such that for each i, xi ∈ S or

x−1i ∈ S. In other words every m ∈M is a finite product m = xn1
i1
xn2
i2
. . . xnkik

where xij ’s are elements of S and are not necessarily distinct and nj’s are

integers.

If G = [S] for some nonempty subset S of G then S is called a set of

generators of G. If S is finite and G = [S] then G is said to be finitely gen-

erated group i.e., a group G is said to be finitely generated if it is generated

by a finite subset of G.

The following may be noted

(i) Every cyclic group is finitely generated.

(ii) Every finite group is finitely generated and the converse is not true.

For example (Z,+) is finitely generated but is not finite
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(iii) All groups are not finitely generated. For example (Q,+).

7.2 Fundamental theorem of finitely generated abelian groups

7.2.1 Theorem : Let A be a finitely generated abelian group then A can be

decomposed as a direct sum of a finite number of cyclic groups Ci. Precisely

A = C1 ⊕ C2 ⊕ . . . ⊕ Ck such that either C1, C2, . . . , Ck are all infinite or

for some j ≤ k, C1, C2, . . . , Cj are of order m1,m2, . . . ,mj respectively with

m1|m2| . . . |mj and Cj+1, . . . , Ck are infinite.

Proof. Given that A is finitely generated abelian group i.e., A is generated

by a finite number of elements of A.

Let k be the smallest number such that A is generated by a set of k

elements. The theorem is proved by induction on k.

If k = 1 then A is generated by a single element i.e., A is cyclic group

and the theorem follows trivially.

Let k > 1, and we assume that the theorem is valid for every group gen-

erated by a set of k − 1 elements. Then we have the following possibilities.

(i) A has a generating set S = {a1, a2, . . . , ak} with the property that for all

α1, α2, . . . , αk ∈ Z such that the equation
n∑
i=1

αiai = 0 ⇒ αi = 0 (1 ≤ i ≤ k).

(ii) A has no generating set of k elements with the property stated in (i).

Case(i) In this case none of the elements of S is the additive identity. It is

easy to see that every subset of S has the property stated in (i). Let Ci = [ai]

be the cyclic subgroup generated by ai, 1 ≤ i ≤ k. Clearly αiai = 0⇒ αi = 0

hence Ci is an infinite cyclic group and Ci B A. Every element a ∈ A has a

unique representation of the form a =
k∑
i=1

αiai where αi ∈ Z.

If a =
k∑
i=1

αiai =
k∑
i=1

βiai then
k∑
i=1

(αi−βi)ai = 0 and this implies αi = βi,

1 ≤ i ≤ k. On using theorem (8.3) we get A = C1 ⊕ C2 ⊕ . . .⊕ Ck i.e., A is

98



the direct sum of finite numbers of infinite cyclic subgroups. This proves a

part of the theorem.

Case(ii) In this case given any generating set {p1, p2, . . . , pk} of A there ex-

ists integers α1, α2, . . . , αk not all of them zero such that
k∑
i=1

αipi = 0. Since∑
αipi =

∑
(−αi)pi = 0, we may assume that αi > 0 for some i.

Now consider all possible generating sets of A with k elements and let

X be the set of all k- tuples (α1, α2, . . . , αk) of integers such that
k∑
i=1

αiqi = 0,

αi > 0 for some i, some generating set {q1, q2, . . . , qk} of A. Let m1 be the

least positive integer that occurs as a component in a k-tuple in X. Without

loss of generality we may take m1 to be the first component, so that for some

generating set S = {a1, a2, . . . , ak} we have m1a1 + α2a2 + . . . + αkak = 0.

By division algorithm we can write αi = qim1 + ri, 0 ≤ ri < m1, 2 ≤ i ≤ k

putting α′is in the above we get

m1b1 + r2a2 + . . .+ rkak = 0 (7.2.1(a))

where b1 = a1+q2a2+. . .+qkak = 0, here b1 6= 0. If b1 = 0 then a1 = −
k∑
i=2

qiai

and this implies that A is generated by k−1 elements which is a contradiction

to the maximality of k. Further b1 = a1 −
k∑
i=2

qiai ⇒ S
′

= {b1, a2, . . . , ak}

is a generating set of A. From the equation (7.2.1(a)) and by the minimal

property of m1 we get r2 = r3 = . . . = rk = 0. Thus we get m1b1 = 0. Let

C1 = [b1]. Now C1 is a cyclic subgroup of A of order m1, since m1 is the least

positive integer such that m1b1 = 0 and C1 B A.

Let A1 be the subgroup generated by {a2, a3, . . . , ak}. Clearly A1 B A

and A = C1 ⊕ A1. By theorem (6.2.2)(iv), it is sufficient to prove that

C1 ∩ A1 = {0}. An element of C1 is of the form α1b1, α1 ∈ Z, 0 ≤ α1 < m1.
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Suppose α1b1 ∈ A1 then α1b1 = α2a2 + . . . + αkak, where αi ∈ Z, 2 ≤

i ≤ k. Therefore α1b1 − α2a2 . . . − αkak = 0 ⇒ αi = 0 by the minimal

property of m1. Thus A = C1⊕A1. Now A1 cannot be generated by less than

k − 1 elements, for otherwise A would be generated by less than k elements

which is a contradiction to minimality of k. By induction of hypothesis

A = C2 ⊕ C3 ⊕ . . .⊕ Ck, where Ci, 2 ≤ i ≤ k are all cyclic groups which are

all infinite or for some j < k, C2, C3, . . . , Cj are finite cyclic groups of orders

m2,m3, . . . ,mj respectively with m2|m3| . . . |mj and the remaining Ci, i > j

are infinite .

Let Ci = [bi], 2 ≤ i ≤ k. Suppose that the order of C2 is m2 then

{b1, b2, . . . , bk} is a generating set of A and

m1b1 +m2b2 + 0.b3 + . . .+ 0.bk = 0 (7.2.1(b))

since m1 is the least positive integer that occurs as a component in any k-

tuple in X, by division algorithm m2 = m1q2 + r2, 0 ≤ r2 < m1. From

equation (7.2.1(b)) we get

m1d1 + r2b2 + 0.b3 + . . .+ 0.bk = 0 (7.2.1(c))

where d1 = b1 + q2b2, here d1 6= 0. If d1 = 0 then C1 = C2 which is a con-

tradiction. Further {d1, b2, . . . , bk} is a generating set of A. By the minimal

property of m1 and from equation (7.2.1(c)) we get r2 = 0. Thus m2 = m1q1

and m1|m2. Hence the theorem.

7.2.2 Note : If A is a finite abelian group then C1, C2, . . . , Ck are all finite.

In this section A denote a finite abelian group written additively.
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7.2.3 Theorem : Let A be a finite abelian group then there exists a unique

finite list of integer m1,m2, . . . ,mk (all > 1) such that |A| = m1m2 . . .mk

and m1|m2| . . . |mk and A = C1 ⊕ C2 ⊕ . . . ⊕ Ck, where C1, C2, . . . , Ck

are cyclic group of A of order m1,m2, . . . ,mk respectively. Consequently

A ' Zm1 ⊕ Zm2 ⊕ . . .⊕ Zmk .

Proof. Given that A is a finite abelian group and hence A is finitely gen-

erated. By theorem (7.2.1) A is decomposed as an (internal) direct sum of

a finite number of finite cyclic subgroups Ci, 1 ≤ i ≤ k with |Ci| = mi and

m1|m2| . . . |mk. We have A = C1 ⊕ C2 ⊕ . . . ⊕ Ck and by the definition of

internal direct sum.

C1 ⊕ C2 ⊕ . . .⊕ Ck ' C1 × C2 × . . .× Ck

Therefore |A| = |C1||C2| . . . |Ck| = m1m2 . . .mk. Further it is known that

every cyclic group of order m is isomorphic to Zm. Hence

A = C1 ⊕ C2 ⊕ . . .⊕ Ck ' Zm1 ⊕ Zm2 ⊕ . . .⊕ Zmk

We now prove the uniqueness of the list m1,m2, . . . ,mk.

Suppose A = C1⊕C2⊕ . . .⊕Ck ' D1⊕D2⊕ . . .⊕Dl where Ci, 1 ≤ i ≤ k, Dj,

1 ≤ j ≤ l are all cyclic groups with |Ci| = mi, m1|m2| . . . |mk and |Dj| = nj,

nl|n2| . . . |nl. Clearly every element of A is of order ≤ mk and Dl has an

element of order nl, from this we get nl ≤ mk. Reversing the argument we

get mk ≤ nl. Thus mk = nl. Now mk−1A = {mk−1a|a ∈ A} from the above
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two decompositions of A, we get

mk−1A =(mk−1C1)⊕ . . .⊕ (mk−1Ck−1)⊕ (mk−1Ck)

=(mk−1D1)⊕ . . .⊕ (mk−1Dl−1)⊕ (mk−1Dl)

⇒ |mk−1A| =|mk−1C1| . . . |mk−1Ck−1| |mk−1Ck|

=|mk−1D1| . . . |mk−1Dl−1| |mk−1Dl| (7.2.3(a))

we have mi

∣∣mk−1, 1 ≤ i ≤ k − 1 ⇒ mk−1Ci = {0} and hence |mk−1Ci| = 1,

1 ≤ i ≤ k − 1. From the equation (7.2.3(a)) we get

|mk−1A| = |mk−1Ck| = |mk−1D1| . . . |mk−1Dl−1| |mk−1Dl|

since mk = nl, note that |mk−1Ck| = |mk−1Dl| and it follows that

1 = |mk−1D1| |mk−1D2| . . . |mk−1Dl−1|

Hence |mk−1Dj| = 1, 1 ≤ j ≤ l−1. This implies in particular that mk−1Dl−1

is trivial and mk−1 is a multiple of nl−1 that is nl−1/mk−1
.

By similar argument we get mk−1/nl−1
Thus mk−1 = nl−1. Continuing in

this way, using the fact m1m2 . . .mk = |A| = n1n2 . . . nl, we get k = l and

mi = ni, 1 ≤ i ≤ k. Hence the theorem.

7.3 THE INVARIANT OF A FINITE ABELIAN GROUP

7.3.1 Definition : Let A be a finite abelian group. If A ' Zm1⊕Zm2⊕ . . .⊕

Zmk where 1 < m1|m2| . . . |mk then A is said to be of type (m1,m2, . . . ,mk)

and the integers m1,m2, . . . ,mk are called invariants of A.
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7.3.2 Remark : Two finite abelian groups are isomorphic iff they are of the

same type.

7.3.3 Definition : A partition of a positive integer k is an r-tuple (k1, k2, . . . , kr)

of positive integers such that k = k1+k2+. . .+kr and ki ≤ ki+1, 1 ≤ i ≤ r−1.

The set of partitions of k is denoted by P (k).

7.3.4 Lemma : Let F be the family of non-isomorphic abelian group of

order pe, where p is a prime then there is a one-one correspondence between

F and the set P (e) of partitions of e .

proof. Let A ∈ F . By theorem (9.4) we have A ' Zm1 ⊕ Zm2 ⊕ . . .⊕ Zmk ,

where 1 < m1|m2| . . . |mk and determine a unique type (m1,m2, . . . ,mk).

Now |A| = pe = m1m2 . . .mk and 1 < m1|m2| . . . |mk then m1 = pe1 ,m2 =

pe2 , . . . ,mk = pek with e1 ≤ e2 ≤ . . . ≤ ek and e1 + e2 + . . . + ek = e. Thus

every A ∈ F determines a partition (e1, e2, . . . , ek) of e.

Define a map σ : F → P (e) by σ(A) = (e1, e2, . . . , ek). If B ∈ F and

B 6= A then A and B are not isomorphic then they determine different par-

titions of e, i.e., σ(A) 6= σ(B). Thus shows that σ is injective.

For every (e1, e2, . . . , es) ∈ P (e) we have the abelian group

G = Zpe1 ⊕ Zpe2 ⊕ . . .⊕ Zpes ∈ F

such that σ(G) = (e1, e2, . . . , es). This shows that σ is surjective. Thus there

is a one-one correspondence between F and P (e). Hence the lemma.

7.3.5 Lemma : Let A be a finite abelian group of order pe11 p
e2
2 . . . pekk , where

pi (1 ≤ i ≤ k) are distinct primes and ei > 0 then A = S(p1)⊕ S(p2)⊕ . . .⊕

S(pk), where |S(pi)| = peii . This decomposition is unique,

i.e., if A = H1 ⊕H2 ⊕ . . .⊕Hk where |Hi| = peii then Hi = S(pi), 1 ≤ i ≤ k.

Proof. We have A is a finite abelian group and |A| = pe11 p
e2
2 . . . pekk , where
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p,is are distinct primes and ei > 0 (1 ≤ i ≤ k) . On using theorem (9.4) we

get A = A1 ⊕ A2 ⊕ . . .⊕ An where Ai (1 ≤ i ≤ n) are cyclic subgroups of A

with the property 1 < |A1|/|A2|/ . . . /|An|.

Let |Ai| = pe1i1 pe2i2 . . . pekik where eji > 0, 1 ≤ j ≤ k, since Ai is

cyclic group and Ai contains unique subgroups A1i, A2i, . . . , Aki of orders

pe1i1 , pe2i2 , . . . , pekik respectively. Using the fact p
′
is are distinct and by La-

granges theorem we get

Aji ∩ (A1i ⊕ . . .⊕ A(j−1)i ⊕ A(j+1)i ⊕ . . .⊕ Aki) = {0}

for all j = 1, 2, . . . , k. Further Aji B Ai, 1 ≤ j ≤ k and we have

Ai = A1i ⊕ A2i ⊕ . . .⊕ Aki. Therefore

A =[A11 ⊕ A21 ⊕ . . .⊕ Ak1]⊕ [A12 ⊕ A22 ⊕ . . .⊕ Ak2]⊕ . . .⊕ [A1n ⊕ A2n ⊕ . . .⊕ Akn]

⇒ A =[A11 ⊕ A2 ⊕ . . .⊕ A1n]⊕ [A21 ⊕ A22 ⊕ . . .⊕ A2n]⊕ . . .⊕ [Ak1 ⊕ Ak2 ⊕ . . .⊕ Akn]

=S(p1)⊕ S(p2)⊕ . . .⊕ S(pk)

where S(pj) = Aj1⊕Aj2⊕. . .⊕Ajn, 1 ≤ j ≤ k and |S(pj)| = |Aj1| |Aj2| . . . |Ajn| =

p
ej1+ej2...+ejn
j = p

ej
j . This proves the first part of the theorem.

Suppose A = H1 ⊕H2 ⊕ . . .⊕Hk where |Hi| = P ei
i , 1 ≤ i ≤ k. Clearly

each of the subgroups S(Pi) and Hi is the subgroup containing all those ele-

ments of A whose orders are power of pi. Hence Hi = S(Pi), 1 ≤ i ≤ k. This

prove the uniqueness of the decomposition of A. Hence the theorem.

7.3.6 Theorem : Let n =
k∏
j=1

p
ej
j , where pj are distinct primes then the

number of non-isomorphic abelian groups of order n is given by
k∏
j=1

|P (ej)|.

Proof. Let An be the family of non isomorphic abelian groups of order n.
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Let A ∈ An and by lemma 10.6, we have A = S(p1) ⊕ S(p2) ⊕ . . . ⊕ S(pk),

where |S(pj)| = p
ej
j , 1 ≤ j ≤ k. By lemma 10.5, the number of non isomor-

phic abelian groups S(pj) is |P (ej)|.

Therefore the number of non isomorphic abelian groups of order n is given

by |P (e1)| |P (e2)| . . . |P (en)|. Thus |An| =
k∏
j=1

|P (ej)|. Hence the theorem.

7.3.7 Example : Find the non-isomorphic abelian groups of orders p, p2

and p3, where p is prime number.

Solution. If n = pe, where p is prime number then by lemma (10.6), the

number of non-isomorphic abelian group of order n is |P (e)|, where P (e) is

the set of partitions of e. The following may be noted

P (1) ={(1)} and |P (1)| = 1

P (2) ={(1, 1), (2)} and |P (2)| = 2

P (3) ={(1, 1, 1), (1, 2), (3)} and |P (3)| = 3

(i) The number of non-isomorphic abelian groups of order p is |P (1)| = 1.

Therefore there is only one abelian group of order p of type (p) and it is

given by Zp. We know that every group of prime order is cyclic and abelian.

Hence there is only one group of order p (up to isomorphism) given by Zp.

(ii) The number of non-isomorphic abelian group of order p2 is |P (2)| = 2.

Hence there are only two non-isomorphic abelian groups of order p2. They

are of type (p, p) and (p2) given by Zp ⊕ Zp and Zp2 respectively.

(iii) The number of non isomorphic abelian groups of order p3 is |P (3)| = 3.

Hence there are only three non-isomorphic abelian groups of order p3. They

are of type (p, p, p), (p, p2), (p3) given by Zp ⊕ Zp ⊕ Zp, Zp ⊕ Zp2 and Zp3

respectively.
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7.3.8 Example : Find the non-isomorphic abelian groups of order 360.

Solution. We have n = 360 = 23.32.51

where e1 = 3, e2 = 2, e3 = 1 p1 = 2, p2 = 3, p3 = 1 and

|P (3)| = 3, |P (2)| = 2, |P (1)| = 1

The number of non-isomorphic abelian groups of order 360 is

3∏
j=1

|P (ej)| =|P (3)| |P (2)| |P (1)|

= 3× 2× 1

= 6

They are of the types : (2, 2, 2, , 3, 3, 5) , (2, 2, 2, 9, 5) , (2, 4, 3, 3, 5) ,

(2, 4, 9, 5) , (8, 3, 3, 5) , (8, 9, 5)

The above six types determine the following 6 non isomorphic abelian groups

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3 ⊕ Z5

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9 ⊕ Z5

Z2 ⊕ Z4 ⊕ Z3 ⊕ Z3 ⊕ Z5

Z2 ⊕ Z4 ⊕ Z9 ⊕ Z5

Z8 ⊕ Z3 ⊕ Z3 ⊕ Z5

Z8 ⊕ Z9 ⊕ Z5

7.4 Summary

In this lesson we have defined any finitely generated abelian group can be
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decomposed as a finite direct sum of cyclic groups and also we have defined

the number of non isomorphic abelian groups of a given order

7.5 Model Examination Questions

(1) State and prove fundamental theorem of finitely generated abelian groups.

(2) Let A be a finite abelian group then there exists a unique finite list of inte-

ger m1,m2, . . . ,mk (all > 1) such that |A| = m1m2 . . .mk and m1|m2| . . . |mk

and A = C1 ⊕ C2 ⊕ . . . ⊕ Ck, where C1, C2, . . . , Ck are cyclic group of A of

order m1,m2, . . . ,mk respectively. Consequently A ' Zm1⊕Zm2⊕ . . .⊕Zmk .

(3) Let F be the family of non-isomorphic abelian group of order pe, where

p is a prime then there is a one-one correspondence between F and the set

P (e) of partitions of e .

(4) Let n =
k∏
j=1

p
ej
j , where pj are distinct primes then the number of non-

isomorphic abelian groups of order n is given by
k∏
j=1

|P (ej)|.

(5) Find the non-isomorphic abelian groups of order 2020.

7.6 Glossary

Finitely generated abelian group, finite direct sum cyclic groups, Invariants,

partition of a integer, partion set, invariants of a finitely generated abelian

group.
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LESSON-8

CAUCHY’S THEOREM FOR ABELIAN

GROUP AND SYLOW THEOREMS

8.1 Introduction : The decomposition of a finite abelian group A as

a direct sum of finite number of cyclic groups gives a complete description

of the structure A. The sylow’s theorems yields a powerful set of tools for

studying the structure and the classification of finite groups. we study the

existence or non existence of simple group of a given order.Moreover we anal-

yse the groups of order p2 and pq, where p q are prime numbers.

8.2 Cauchy’s theorem for abelian group and first sylow theorem

8.2.1 Definition : p-group Let p be a prime number. A group G is said

to be a p-group if the order of every element of G is a power of p.

8.2.2 Example : (i) Z4 is a 2-group.

(ii) Z2 × Z2 is a 2-group.

(iii)Z27 is a 3-group.

8.2.3 Definition : p-subgroup A subgroup H of a group G is said to be

a p-subgroup of G if the order of every element of H is a power of p, where

p is a prime number.

8.2.4 Definition : Sylow p-subgroup Let G be a group and p be a prime

number. Let pm/|G| and pm+1 - |G| (i.e., pm+1 does not divides |G|) where

m ∈ N then any subgroup of order pm of G is called a Sylow p-subgroup of

G (i.e., a maximal p-subgroup of a group G is a Sylow p−subgroup of G).

8.2.5 Lemma : (Cauchy’s theorem for abelian group) Let A be a

finite abelian group and p be a prime number. If p/|A| (i.e., p divides |A| )

then A has an element of order p.

Proof. Let A be a finite abelian group. Let |A| = n. Let p/|A|, where p is
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prime number.

Case(i) If |A| = p then A is cyclic group of order p. Let A =< a >, where

a ∈ A ⇒ O(a) = p ⇒ there exists an element a ∈ A of order p.

Case (ii) Let A be any cyclic group then p/|A| ⇒ |A| = pk for some k. Let

a ∈ A then a|A| = e ⇒ apk = e ⇒ (ak)p = e ⇒ O(ak) = p.

We shall prove the theorem by induction on |A| = n. Let us assume that

the theorem is true for all groups whose order is less than |A|.

Consider B =< ak >, the cyclic group generated by ak of order p then

|B| = p where p < n. Therefore we have p/|B| and p < n then by induction

B has an element of order p. Since B < A then A has an element of order p.

Case (iii) Let A is not cyclic group. Suppose there exist b 6= e in A such that

A 6=< b > a cyclic group generated by b (Since b ∈ A, A 6=< b > if A =< b >

then A is cyclic group. But given A is not cyclic therefore A 6=< b >).

If p/| < b > | then < b > has an element of order p by induction. But

< b > < A ⇒ A is also has an element of order p.

Suppose p - | < b > | then consider the quotient group A
<b>

then p/| A
<b>
|.

But | A
<b>
| = |A|

|<b>| < |A| then by induction A
<b>

has an element of order p.

Let ā ∈ A
<b>

be an element of order p then ā = a < b > for some a ∈ A.

Let O(a) = k then ak = e.

Now (ā)k = (a < b >)k = a < b > a < b > . . . a < b > (k times) =ak < b >

= e < b > = < b > which is the identity of A
<b>

⇒ p/k ⇒ p/| < a > |, where < a > is a cyclic subgroup of A generated

by a ∈ A. Then by induction < a > has an element of order p ⇒ A has an

element of order p.

8.2.6 Theorem : (First Sylow theorem) Let G be a finite group and let
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p be a prime number. If pm/|G| then G has a subgroup of order pm.

Proof. Let |G| = n. Given that p is a prime number and pm/n.

We prove the theorem by induction on n. If n = 1 then the result is trivial.

Assume that the result is true for all groups of order less than n

i.e., If H is a finite group of order less than n and pk/|H| then H has a

subgroup of order pk.

Consider Z(G) the centre of G and we have the following two cases.

case(i) Suppose p/|Z(G)|, since Z(G) is abelian by Cauchy’s theorem for

abelian group (11.6) there exist an element say a ∈ Z(G) of order p.

Now consider the cyclic group C generated by a, i.e., C =< a > where

a ∈ Z(G) then C BG.

Since C =< a >= {ai|i = 1, 2, . . . , p}, consider for any g ∈ G we have

gaig−1 = (gag−1)(gag−1) . . . (gag−1) (i times)

= ai ∈ C (a ∈ Z(G)⇒ ga = ag)

Consider the quotient group G
C
, we have pm/|G| ⇒ |G| = pmk, for some k

and |C| = p (since |C| = |a| = p)

then |G
C
| = |G|

|C| = pmk
p

= pm−1k < |G| and also pm−1/|G
C
|

then by induction G
C

has a subgroup say H̄ of order pm−1.

Then there exist a unique subgroup H of G such that H̄ = H
C

⇒ |H̄| = |H
C
| = |H|

|C|

⇒ |H| = |H̄||C| = pm−1p = pm

⇒ G has a subgroup of order pm.

Case(ii) Suppose p - |Z(G)|. We have the class equation of G

n = |G| = |Z(G)|+
∑

a[G : N(a)]

where the summation runs over one element from each conjugate class having
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more than one element, we have p/|G| and p - |Z(G)|

⇒ p - [G : N(a)], for some a ∈ G, a 6∈ Z(G)

If p/[G : N(a)] for every a then p/
∑

[G : N(a)]

⇒ p/|G| and p/
∑

[G : N(a)]

⇒ p/|Z(G)| which is a contradiction.

For the above a we have |G| = |N(a)|[G : N(a)] and p - [G : N(a)]

a /∈ Z(G) ⇒ |N(a)| = pml for some l < k. Therefore pm/|N(a)|.

Clearly |N(a)| < |G| = n. Hence by induction of hypothesis N(a) has a sub-

group H of order pm. Thus G has a subgroup H of order pm.

8.2.7 Corollary : (Cauchy’s theorem) Let G be a finite group and p is

prime. If p/|G| then G has an element of order p.

Proof. Let G be a finite group such that p/|G| then by first sylow theorem

G has a subgroup H of order p.

Since p is prime and |H| = p ⇒ H is cyclic.

⇒ every non identity element of H is of order p. Therefore H has p − 1

elements of order p. But every element of H is an element of G then G has

at least p− 1 elements of order p. Hence the result.

8.2.8 Corollary : A finite group G is a p-group if and only if its order is

a power of p.

Proof. Suppose that the order of G is a power of p say pm. For any element

a ∈ G, we have O(a)/|G| ⇒ O(a)/pm ⇒ O(a) = pk, for some k ≤ m.

Thus every element of G has order a power of p. Hence G is a p−group.

Conversely, suppose that G is a p-group i.e. every element of G has order

power of p.

Suppose |G| = pm then there is nothing to prove.
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Suppose |G| = qn, for some prime number q 6= p then q/|G|. By Cauchy’s

theorem G has an element of order q( 6= p) which is a contradiction, since G

is a p-group. Therefore the order G is a power of p. Hence the result.

8.2.9 Definition : Let H be a subgroup of a group G then

N(H) = {g ∈ G|gHg−1 = H} is called the normalizer of H in G.

8.2.10 Note : (i) N(H) < G

(ii) H BN(H)

(iii) N(H) is the largest subgroup of G in which H is normal.

(iv) If K is a subgroup of N(H) then H BKH.

8.2.11 Lemma : Let H and K be subgroups of a group G and CH(K) =

{hKh−1|h ∈ H} the set of H-conjugates of K then |CH(K)|=[H : N(K)∩H].

Proof. Define a mapping f : CH(K)→ N(K) ∩H by

f(hKh−1) = (N(K) ∩H)h. Clearly f is onto.

Now to prove f is one-one: f(h1Kh
−1
1 ) = f(h2Kh

−1
2 )

⇒ h−11 h2 ∈ N(K) ∩H

⇒ h−11 h2 ∈ N(K)

⇒ h−11 h2Kh
−1
2 h1 = K

⇒ h1Kh
−1
1 = h2Kh

−1
2

Thus there is one-one correspondence between CH(K) and the set of distinct

right cosets of N(K) ∩H in H. Therefore |CH(K)| = [H : N(K) ∩H].

Hence the lemma.

8.2.12 Theorem : Let G be a finite group and let p be a prime number

then all Sylow p-subgroups of G are conjugate and their number np divides

O(G) and satisfies np ≡ 1(mod p).

Proof. (i) Suppose that |G| = pmq, where p - q then by first Sylow theorem
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G has a subgroup K of order pm, since pm/|G| and pm+1 - |G|. Let K be a

Sylow p−subgroup of G and C(K) be the family of G-conjugates to K

i.e., C(K) = CG(K) = {gKg−1|g ∈ G}. By Lemma (8.2.11), we get

|C(K)| = |CG(K)| = [G : N(K) ∩ G] = [G : N(K)], since N(K) is a

subgroup of G).

Given G is finite then |C(K)| = |G|/|N(K)|. It may be seen that

pm/|N(K)|.

Since N(K) is the largest subgroup of G in which K is normal and |K| = pm.

Therefore

p - (|G|/|N(K)|)⇒ p - |C(K)| (8.2.12(a))

Let H be any Sylow p-subgroup of G. We shall show that H is conjugate to

K. Now the set C(K) is an H-set by conjugation. For any L ∈ C(K), let

CH(L) = {hLh−1|h ∈ H} the orbit of L.

Now CH(L) = {hgKg−1h−1|g ∈ G, h ∈ H}

⇒ CH(L) ⊂ CG(K) = C(K) and

C(K) =
⋃

L∈C(K)

CH(L) (a partition)) (8.2.12(b))

where the union runs over one element L from each conjugate class CH(L)

(orbit). By Lemma (8.2.11), since H is a Sylow p-subgroup of order pm

|CH(L)| = [H : N(L) ∩H] = pe, e ≥ 0 (8.2.12(c))

113



Claim P e = 1⇔ H = L

If H = L then pe = [L : N(L) ∩ L] = [L : L] = 1.

Conversely suppose that pe = 1 ⇒ H = N(L) ∩H ⇒ H ⊂ N(L)

⇒ HL = LH ⇒ HL is a subgroup of G.

Further H ⊂ N(L) ⇒ LBHL. (by Note (8.2.10) (iv))

By second isomorphism theorem HL
L
' H

H∩L

⇒ |HL
L
| = H

H∩L = pf (f ≥ 0).

If f > 0 then |HL| > |L| = pm and |HL|
|G| this is not possible.

Therefore f = 0 ⇒ HL = L ⇒ H ⊂ L ⇒ H = L, since |H|=|L| = pm.

Hence the claim

From the equations (8.2.12(b)) and (8.2.12(c)) we get

|C(K)| =
∑

pe (8.2.12(d))

From the equation (8.2.12(a)), we have that p does not divide |C(K)|. This

implies that there should be atleast one term pe is 1 in
∑
pe. This shows that

e = 0 atleast once in the summation. By our claim above H = L, where

L ∈ C(K) i.e., L is conjugate of K and hence H is conjugate to K. Thus

any two Sylow p-subgroups of G are conjugate. This proves the second Sylow

theorem.

(ii) We have proved in (i) that any Sylow p-subgrop of G is conjugate to K.

Therefore np, the number of Sylow p-subgroups of G is given by |C(K)| and

np = |C(K)| = |G|/|N(K)| (8.2.12(e))

This shows that np divides |G|.
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From the above claim, it is clear that there is only one term in
∑
pe is 1.

Therefore from the equations (8.2.12(d)) and (8.2.12(e)) we get

np =
∑
e≥0

pe = 1 +
∑
e>0

pe = 1 + kp

⇒ np ≡ 1(mod p)

This proves the third Sylow theorem. Hence the theorem.

8.3 Applications of Sylow theorems

8.3.1 Corollary : A Sylow p−subgroup of a finite group is unique if and

only if it is normal.

Proof. Let G be a finite group of order pmq, where p is a prime number

and p - q. Let K be a Sylow p−subgroup of G then

K is unique ⇔ np = 1

⇔ |C(K)| = 1

⇔ gKg−1 = K ∀ g ∈ G

⇔ K BG

Hence the result.

8.3.2 Example : If d is a divisor of n, the order of a finite abelian group

A then A contains a subgroup of order d.

Solution. Given a finite abelian group A of order n and d/n .

Let n = pe11 p
e2
2 . . . pekk , where pi’s are distinct primes and ei > 0.

Then by Lemma (7.3.5) we get

A = S(p1)⊕ S(p2)⊕ . . .⊕ S(pk)
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where |S(pi)| = peii , 1 ≤ i ≤ k.

Let d = pf11 p
f2
2 . . . pfkk , since pfii divides peii , then by first Sylow theorem S(pi)

has a subgroup S
′
(pi) of order pfii , 1 ≤ i ≤ k

Now, it may be seen that B = S
′
(p1)⊕ S

′
(p2)⊕ . . .⊕ S

′
(pk) is a subgroup

of A of order d.

8.3.3 Example : Prove that every group of order 2p must have a normal

subgroup of order p, where p is prime number.

Solution. Let G be a group of order 2p, where p is a prime. Since p||G|
then by first Sylow theorem G has subgroup H of order p. Since [G : H] = 2

then H BG. Thus G has a normal subgroup of order p.

8.3.4 Example : If a group G of order pn (p is a prime) contains exactly

one subgroup of orders p, p2, . . . , pn−1 then G is cyclic group.

Solution. Given a group G and |G| = pn, where p is a prime and n is

positive integer. By first Sylow’s theorem G has a subgroup H of order pn−1.

Again by first Sylow theorem H has subgroups of orders p, p2, . . . , pn−2 .

Since G has exactly one subgroup each of orders p, p2, . . . , pn−1 then all proper

subgroups of G are subgroups of H.

Let a ∈ G and a 6∈ H. Suppose O(a) < pn then a generates a proper

subgroup K of order less that pn. Hence K ⊂ H and there by a ∈ H which

is a contradiction. Therefore O(a) = pn and G = [a]. Hence the result.

8.3.5 Example : If H is normal subgroup of a finite group G and if the

index of H in G is prime to p then H contains every Sylow p-subgroup of G.

Sol. Let |G| = pmq, (p, q) = 1. Given H BG and ([G : H], p) = 1

⇒
(
|G|
|H| , p

)
=1 ⇒ |H| = pmq1, (p, q1) = 1

By first Sylow theorem H has a Sylow p-subgroup K, where |K| = pm.
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Now K is also a Sylow p-subgroup of G.

Let L be any Sylow p-subgroup of G then by second Sylow theorem L is

conjugate to K.

Let L = gKg−1 for some g ∈ G then L = gKg−1 ⊂ gHg−1 = H (since H BG).

Thus all Sylow p-subgroups of G are contained in H. Hence the result.

8.3.6 Example : Every group of order p2q, where p, q are distinct primes,

contains a normal Sylow p-subgroup and it is solvable.

Solution. Let G be a group and |G| = p2q where p, q, are distinct primes.

By first Sylows theorem G has a Sylow p-subgroup and a Sylow q-subgroup.

Case (i) Let p > q. The number np of Sylow p-subgroup of G is given by

np = 1 + kp, where k is a non negative integer and (1 + kp)/q .

Now 1 + kp = 1 since p > q ⇒ np = 1. Therefore G has a unique Sylow

p-subgroup H of G of order p2. Hence H BG.

Case (ii) Let p < q. The number nq of Sylow q-subgroups of G is given by

nq = 1 + kq and (1 + kq)/p2.

⇒ 1 + kq = 1, p or p2.

If 1 + kq = 1 then G has a unique Sylow q-subgroup L of order q and LBG.

Suppose 1 + kq 6= 1 then 1 + kq 6= p, since q > p.

Thus 1 + kq = p2 i.e., there are p2 Sylow q-subgroups each of order q in G.

Hence G has p2(q− 1) distinct non identity elements of order q and G

has p2q−p2(q−1) = p2 elements which are not of order q. These p2 elements

must be the elements of a Sylow p-subgroup of G. This shows that G ha a

unique Sylow p-subgroup H of order p2 and hence H BG

In any case G has either a normal Sylow p-subgroup H of order p2 or a

normal Sylow q-subgroup L of order q. This proves the first part.
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If G has a subgroup H then {e} ⊂ H ⊂ G is a normal series whose

factors are H and G
H

which are abelian (since every group of order p2 and p

are abelian). Hence G is solvable.

If G has a subgroup L then {e} ⊂ L ⊂ G is a normal series whose factors

are abelian. Hence G is solvable in this case also. In any case G is solvable.

8.3.7 Example : Prove that there are only two non abelian groups of

order 8.

Solution. Let G be a non abelian group and |G| = 8.

If G contains an element of order 8 then G is cyclic and abelian which

is a contradiction.

If every element of G is of order 2 then G is abelian which is a contra-

diction.

Therefore G has an element a of order 4. Let b ∈ G such that b 6∈ [a] then

G = [a] ∪ [a]b.

If b2 ∈ [a]b then b ∈ [a] which is a contradiction. Therefore b2 ∈ [a].

If b2 = a2 or a3 then O(b) = 8 and G becomes abelian which is a con-

tradiction. Thus b2 = e or a. Since [a] is of index 2 in G, [a] B G. Hence

b−1ab ∈ [a].

Since O(b−1ab) = O(a) = 4, we have either b−1ab = a or a3.

If b−1ab = a then ab = ba and G is abelian which is contradiction. Thus

b−1ab = a3

Thus we have two non abelian groups of order 8.

(i) G1 = [a, b] with defining relations a4 = e, b2 = e, b−1ab = a3.

(ii) G2 = [a, b] with defining relations a4 = e, b2 = a2, b−1ab = a3.

The first is the octic group and the second is the quaternion group. It may be
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seen that the quaternion group contains only one element of order 2, where

as the octic group has more than one element of order 2.

Therefore G1 and G2 are non isomorphic. Hence the result.

8.3.8 Note : (i) We have already seen that there are only three abelian

groups of order 8. They are of types (2, 2, 2), (2, 4), (8).

The following are the non isomorphic abelian groups of order 8.

Z2 ⊕ Z2 ⊕ Z2 , Z2 ⊕ Z4 , Z8

(ii) There are five groups of order 8 upto isomorphism. Three of them are

abelian and the remaining two are non abelian (octic and quaternion )

8.3.9 Example : Prove that there are no simple groups of orders 63, 56

and 36.

Solution. Let G be a group of given order .

(i) Given |G| = 63 = 32.7

By first Sylow theorem G has a Sylow 3-subgroup of order 9 and a Sylow

7-subgroup of order 7. By third Sylow theorem np the number of Sylow p-

subgroups of G divides |G| and np = 1 + kp.

Therefore n7 = 1 + 7k and (1 + 7k)/32.7

⇒ (1 + 7k)/32

⇒ (1 + 7k)/9

⇒ k = 0

Thus n7 = 1 and hence G has unique Sylow 7-subgroup H and HBG. Thus

G is not simple, since it has a normal subgroup of order 7.

(ii) Given |G| = 56 = 23.7

By first Sylow theorem G has a Sylow 2-subgroup of order 8 and a Sylow

7-subgroup of order 7. By third Sylow theorem n7 the number of Sylow 7-
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subgroups of G divides |G| and n7 = 1 + 7k.

⇒ (1 + 7k)/8

⇒ k = 0 or k = 1

⇒ n7 = 1 or 8.

If n7 = 1 then G has a normal subgroup of order 7 and G is not simple.

Suppose n7 = 8 then G has eight Sylow 7-subgroups of order 7 and each

Sylow 7-subgroup has 7 − 1 = 6 elements of order 7. Therefore there are

8(7 − 1) = 8(6) = 48 elements of order 7 and the remaining elements

56− 48 = 8 elements must form a unique Sylow 2-subgroup.

Since G has normal subgroup of order 8 then G is not simple in this case

also. Hence the result.

(iii) Given |G| = 36 = 22.32

The number of Sylow 3-subgroups n3 = 1 + 3k divides |G| = 22.32.

Thus (1 + 3k)/22 ⇒ k = 0 or 1 ⇒ n3 = 1 or 4.

If n3 = 1 then G has unique subgroup of order 32 = 9. Therefore G has a

normal subgroup of order 32 = 9 and G is not simple.

If n3 = 4 then G has four Sylow 3-subgroups of order 9 and each Sylow 3-

subgroup has 32−1 = 8 elements of order 3. Therefore there are 4(32−1) = 32

elements of the Sylow 3-subgroups and the remaining 36 − 32 = 4 elements

must form a unique Sylow 2-subgroup of order 4. Thus G has a normal sub-

group of order 4 and G is not simple in this case also. Hence the result.

Alternative Method : Given |G| = 22.32. By the first Sylow theorem G

has a Sylow 3− subgroup H of order 9. Since [G : H] = 4 then there exist a

homomorphism φ : G→ S4 with kerφ =
⋂
x∈G

xHx−1.

If kerφ = {e} then φ is one-one and G ⊂ S4⇒ G is isomorphic to a subgroup

120



of S4. This is not possible, since |G| = 36 and |S4| = 24.

Now kerφ =
⋂
x∈G

xHx−1 6= G and kerφ B G. Thus G has nontrivial normal

subgroup and G is not simple. Hence the result.

8.3.10 Example : Prove that a group of order 108 has a normal subgroup

of order 27 or 9. i.e., there is no simple group of order 108.

Solution. Let G be a group and |G| = 108 = 23.33.

The number of Sylow 3-subgroups is n3 = 1 + 3k and (1 + 3k)/22.32

⇒ (1 + 3k)/22

⇒ k = 0 or 1

If k = 0 then n3 = 1 and hence G has a unique Sylow 3-subgroup of order

27 then by Example (13.2), we have H is normal in G. Thus G has normal

subgroup of order 27.

Suppose k = 1 then n3 = 4 and G has four Sylow 3-subgroups of order 27.

Let H and K be any two distinct Sylow 3-subgroups of G, we have

|HK| = |H||K|
|H ∩K|

=
27(27)

|H ∩K|
≤ 108

⇒ |H ∩K| ≥ 27

4

Further |H ∩K|/27. Since H and K are distinct we must have |H ∩K| = 9.

Now |H ∩K|BH and |H ∩K|BK (since every subgroup of order pn−1 is

normal in a group G of order pn).

Consider N(H ∩K). Now H ⊂ N(H ∩K) and K ⊂ N(H ∩K)

Since N(H ∩ K) is the largest subgroup of G in which H ∩ K is normal.
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Therefore HK ⊂ N(H ∩K). Note that

|N(H ∩K)| ≥ |HK| = |H||K|
|H ∩K|

=
27(27)

9
= 81

Further by Lagrange’s theorem we get |N(H ∩K)|/|G|

⇒ |N(H ∩K)| = 108 = |G| and N(H ∩K) = G. Hence H ∩K BG.

Thus G has a normal subgroup of order 9 and G is not simple group.

8.4 Groups of order pq, where p, q are primes and q > p :

Let G be a finite group and |G| = pq, where p, q are prime numbers and

q > p. By first Sylow theorem G has Sylow p-subgroup of order p and a

Sylow q-subgroup of order q.

By third Sylow theorem nq the number of Sylow q-subgroup of order q

is given by nq = 1 + λq, where λ is a non-negative integer and (1 + λq)|p.

If λ > 0 then 1 + λq > p (since q > p) and hence (1 + λq) - p ⇒ λ = 0 and

nq = 1. Therefore G has unique Sylow q-subgroup K of order q and K BG.

Since q is prime then K is cyclic.

Let K = [b], where bq = 1 = e. Further np the number of Sylow p-

subgroups of order p is given by np = 1+µp and (1+µp)|q. Since q is prime,

we must have either 1+µp = 1 or 1+µp = q ⇒ 1+µp = 1 or q ≡ 1(mod p).

Therefore we consider the following two cases:

case(i) suppose 1 + µp = 1 then np = 1. Therefore G has a unique Sylow

p-subgroup H of order p and HBG. Since p is prime then H is cyclic group.

Let H = [a], where ap = e. Clearly H ∩K is trivial. Therefore hk = kh ∀

h ∈ H, k ∈ K. Now ab ∈ G and O(ab) = pq. ⇒ G = [ab] and G is cyclic.

case(ii) Suppose q ≡ 1(mod p) then np = 1 + µp = q and G has q Sylow

p-subgroups of order p. Since p is prime then they are cyclic groups. Let
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H = [a] be one of the Sylow p-subgroups of G, where ap = e then [a, b] is the

group generated by a and b, contains both H and K. Hence both |H| and

|K| divides |[a, b]| ⇒ |[a, b]| = pq and G = [a, b].

We have K BG then a−1ba = br, for some integer r.

If r ≡ 1(mod q) then r = 1 + kq and a−1ba = br = b1+kq = b ⇒ ab = ba ⇒ G

is abelian. ⇒ np = 1 which is a contradiction. This shows that r 6≡ 1(mod q).

Thus G = [a, b] with the following relations:

ap = 1 = bq, a−1ba = br, r 6≡ 1(mod q) (8.4(a))

We have a−1ba = br ⇒ (a−1ba)2 = b2r ⇒ a−1b2a = b2r. By induction we

get a−1bra = br
2
. Further a−1ba = br ⇒ a−1(a−1ba)a = a−1bra = br

2 ⇒

a−2ba2 = br
2
. By induction we get a−pbap = br

p ⇒ b = br
p

(since ap = 1)

⇒ rp ≡ 1(mod q) (since O(b) = q)

The integer r in the equation (14.2(a)) is a solution of the congruence equa-

tion

Zp ≡ 1(mod q) (8.4(b))

Conversely, if r is a solution of the equation (14.2(b)) then the defining rela-

tion equation (14.2(a)) determine a group consisting pq elements ajbj, 0 ≤

i ≤ p− 1, 0 ≤ j ≤ q − 1.

We have rp ≡ 1(mod q) ⇒ rprp ≡ 1(mod q) ⇒ (r2)p ≡ 1(mod q). Therefore

r2 is a solution of equation (14.2(b)). By induction, it may be seen that rj is

a solution of equation (14.2(b)), 2 ≤ j ≤ p− 1 and they all give rise to the

same group, because replacing a by aj as a generator of H replaces r by rj.

It may be seen that the condition in case(i) 1 + µp = 1 is independent
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of p and q. Hence a cyclic group of order pq always exists. If q > p and

q ≡ 1(mod p) then a non-abelian group G = [a, b] also exists, besides the

cyclic group of order pq with the following defining relations.

ap = 1 = bq, a−1ba = br, r 6≡ 1(mod q), rp ≡ 1(mod q) (8.4(c))

From the above discussion we conclude the following:

There are atmost two groups G of order pq, where p, q are prime numbers

and q > p.

(i) The cyclic groups G of order pq.

(ii) The non-abelian group G = [a, b] with the defining relations given in the

equation (8.4(c)), if q ≡ 1(mod p).

8.4.1 Note : (i) If q 6≡ 1(mod p) then there exist only one cyclic group of

order pq.

(ii) If q ≡ 1(mod p) then there exist two non-isomorphic group of order pq.

8.4.2 Remark : If p, q are prime numbers and q > p then every group G

of order pq has a unique Sylow q-subgroup of order q and this subgroup is

normal in G. Hence there is no group of order pq is simple (if q > p).

8.4.3 Example : (i) Every group order 15, 35 are cyclic.

(ii) There are no simple groups of order 15 and 35.

8.5 Groups of order p2, where p is prime number.

We know that every group of order p2 is abelian and there are only two

abelian groups of order p2. Therefore there are only two group of order p2.

(i) The abelian group of type (p, p) and it is Zp ⊕ Zp.

(ii) The abelian group of type (p2) and it is Zp2 .

8.6 Summary
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In this lesson we have defined of p-group, p-subgroup and sylow p-group.

Also we have proved Cauchy’s theorem for abelian group and first, second

and third sylow theorems. Further we have proved the applications of sylow

theorems and we have discussed the groups of order pq and groups of order

p2, where p, q are prime numbers.

8.7 Model Examination Questions

(1) Let G be a finite group and p is prime. If p/|G| then G has an element

of order p.

(2) Let G be a finite group and let p be a prime number. If pm/|G| then G

has a subgroup of order pm.

(3) Let G be a finite group and p is prime. If p/|G| then G has an element

of order p.

(4) A finite group G is a p-group if and only if its order is a power of p.

(5) Let G be a finite group and let p be a prime number then all Sylow

p-subgroups of G are conjugate and their number np divides O(G) and sat-

isfies np ≡ 1(mod p).

(6) Prove that a group of order 1986 is not simple.

(7) If the order of a group is 42. Prove that its Sylow 7-subgroup is normal.

(8) Let G be a group then prove that | G
Z(G)

|6= 77.

(9) Show that a group of order p2q, where p and q are distinct primes, must

contain a normal Sylow subgroup and be solvable.

8.8 Glossary

p-group, p-subgroup, sylow p-group, Cauchy’s theorem and sylow theorem,

Conjugate subgroups, sylow p-subgoup,unique normal subgroup, simple group,

cyclic group.
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UNIT-III

LESSON-9

IDEALS OF RINGS

9.1 Introduction : In this lesson, we study the ideals of rings, principal

ideal ring and quotient ring.

9.2 Ideals of Rings

9.2.1 Definition : A non empty subset S of a ring R is called an ideal

(two sided ideal) of R if (i) a− b ∈ S ∀ a, b ∈ S.

(ii) ar ∈ S and ra ∈ S ∀ r ∈ R, a ∈ S.

9.2.2 Definition : A non empty subset S of a ring R is called a right (left)

ideal if (i) a− b ∈ S ∀ a, b ∈ S.

(ii) ar ∈ S (ra ∈ S) ∀ r ∈ R, a ∈ S.

9.2.3 Property : Prove that every ideal of a ring R is a subring of R.

Proof. Let S be an ideal of R then a− b ∈ S ∀ a, b ∈ S.

Also a ∈ S, b ∈ S ⇒ a ∈ S and b ∈ R (S ⊂ R)

⇒ ab ∈ S ( since ar ∈ S ). Therefore S is a subring of R.

9.2.4 Note : Converse of the above property need not be true.

9.2.5 Example : Prove that S = (Z,+, .) is a subring of R = (Q,+, .),

but not an ideal of R = (Q,+, .).

Sol. S is a subring of R but S is not an ideal of R because ar /∈ S for r ∈ R,

a ∈ S, since r = 1
3
, a = 2⇒ ar = 2

3
/∈ S.

9.2.6 Note : (i) Every ideal is both right and left ideal.

(ii) In a commutative ring every right or left ideal is a two sided ideal.

(iii) Every ring R has at least two ideals {0} and R itself then these two

ideals are called trivial ideals of R. If R has any ideal other than these two
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then they are called proper ideals of R.

9.2.7 Example : Prove that every subring of the ring of integers (Z,+, .)

is an ideal of (Z,+, .).

Sol. Let S be a subring of Z. For any a, b ∈ S ⇒ a− b ∈ S

Let r ∈ Z and a ∈ S then

ra = a+ a+ · · ·+ a (r times) if r > 0

= 0 if r = 0

= (−a) + (−a) · · ·+ (−a) (r times) if r < 0

Since S is a subring we have for any a ∈ S

a+ a+ . . .+ a (r times)∈ S (by closure of addition) and 0 ∈ S,

(−a) + (−a) + . . .+ (−a) ∈ S ⇒ ra ∈ S ∀ r ∈ Z, a ∈ S

Similarly ar ∈ S ∀ r ∈ Z, a ∈ S. Therefore S is an ideal of Z.

9.2.8 Example : Prove that the right as well as left ideals of a division

ring are trivial ideals only.

Proof. Let D be a division ring. Let I be any ideal of D.

If I = {0} then there is nothing to prove.

Let I 6= 0. Let a be any nonzero element of I ⇒ a ∈ D ⇒ a−1 ∈ D

We have a ∈ I, a−1 ∈ D ⇒ aa−1 ∈ I (I is an ideal)

⇒ 1 ∈ I.

For any r ∈ D we have 1r ∈ I ⇒ r ∈ I

Therefore D ⊂ I, but we have I ⊂ D. Hence I = D

∴ D has only trivial ideals.

9.2.9 Example : Let R be a ring and a ∈ R then aR = {ax : x ∈ R} is a

right ideal of R and Ra = {xa : x ∈ R} is left ideal of R.

Sol. (i) aR = {ax : x ∈ R}
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0 ∈ R ⇒ a0 = 0 ∈ aR. ∴ aR is a nonempty subset of R

Let ax1, ax2 be any two elements of R, where x1, x2 ∈ R

⇒ ax1 − ax2 = a(x1 − x2) ∈ aR (x1 − x2 ∈ R)

Let r ∈ R and ax1 ∈ aR then (ax1)r = a(x1r) ∈ aR (x1r ∈ R)

∴ aR is a right ideal of R. Similarly Ra is a right ideal of R.

9.2.10 Note : (i) If R is commutative then aR is an ideal of R.

(ii) If R has unity then a = a1 ∈ aR

(iii) aR is the smallest ideal of R containing a.

Suppose a1R is another ideal of R containing a. Let ar be any element of

aR we have a ∈ a1R and r ∈ R ⇒ ar ∈ a1R (a1R is an ideal)

⇒ aR ⊂ a1R. ∴ aR is the smallest ideal of R containing a.

9.3 Rings of Matrices

9.3.1 Rings of Matrices : Let R be a ring and Rn be the set of all n× n

matrices whose elements are from R then Rn forms a ring with respect ma-

trix addition and matrix multiplication.

In general if A,B ∈ Rn where n > 1 then AB 6= BA

∴ For n > 1, Rn is a non commutative ring. Also Rn is not an integral

domain because Rn has nonzero divisors, A 6= 0, B 6= 0 ⇒ AB = 0

Suppose R has unity we denote by eij the matrices in Rn whose (i, j)

entry is 1 and whose other entries are zeroes.

i.e. In R3 consider e11 =


1 0 0

0 0 0

0 0 0

, e12 =


0 1 0

0 0 0

0 0 0

 etc.

The eij
′
s, 1 ≤ i, j ≤ n are called matrix units.

From the definition of multiplication of matrices, it follows that
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eijekl = 0 if j 6= k

= eil if j = k i.e. eijekl = δjkeil

where δjk = 0 if j 6= k

= 1 if j = k, is called the Kronecker delta.

In R3, consider e11 =


1 0 0

0 0 0

0 0 0

, e23 =


0 0 0

0 0 1

0 0 0

, e13 =


0 0 1

0 0 0

0 0 0


then

e11e23 =


1 0 0

0 0 0

0 0 0




0 0 0

0 0 1

0 0 0

 =


0 0 0

0 0 0

0 0 0



e11e13 =


1 0 0

0 0 0

0 0 0




0 0 1

0 0 0

0 0 0

 =


0 0 1

0 0 0

0 0 0

 = e13

Also if A = (aij) ∈ Rn then A can be uniquely expressed as a linear

combination of eij
′
s over R i.e., A =

∑
1≤i,j≤n

aijeij, aij ∈ R.

For example A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 then

A =
∑

1≤i,j≤3
aijeij

= a11e11+a12e12+a13e13+a21e21+a22e22+a23e23+a31e31+a32e32+a33e33

=


a11 0 0

0 0 0

0 0 0

+


0 a12 0

0 0 0

0 0 0

+ . . .+


0 0 0

0 0 0

0 0 a33


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=


a11 a12 a13

a21 a22 a23

a31 a32 a33


Let S be the set of n×n matrices in which all the entries below diagonal

are zero

i.e., Let S consist of matrices



a11 a12 . . . a1n

0 a22 . . . a2n

. . . .

. . . .

0 0 . . . ann


, aij ∈ R.

then S is a ring with the usual addition and multiplication of matrices

and is called the ring of upper triangular matrices. Similarly we have the

ring of lower triangular matrices.

9.3.2 Example : Let R be the n × n matrix ring over a field F, for any

1 ≤ i ≤ n. Let Ai(or Bi) be the set of matrices in R having all rows(columns)

except possibly the ith row(column) zero then Ai is a right ideal and Bi is a

left ideal in R.

Sol. Ai =

{


0 0 . . . 0

. . . .

ai1 ai2 . . . ain

. . . .

0 0 . . . 0


∣∣∣∣∣aij ∈ F

}
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Let A =



0 0 . . . 0

. . . .

ai1 ai2 . . . ain

. . . .

0 0 . . . 0


, B =



0 0 . . . 0

. . . .

bi1 bi2 . . . bin

. . . .

0 0 . . . 0


be any

two elements of Ai, aij, bij ∈ F

A−B =



0 0 . . . 0

. . . .

ai1 − bi1 ai2 − bi2 . . . ain − bin
. . . .

0 0 . . . 0


, where aij − bij ∈ F

⇒ A−B ∈ Ai

Let r =



r11 r12 . . . r1n

. . . .

ri1 ri2 . . . rin

. . . .

rn1 rn2 . . . rnn


∈ R then

Ar =



0 0 . . . 0

. . . .

ai1 ai2 . . . ain

. . . .

0 0 . . . 0





r11 r12 . . . r1n

. . . .

ri1 ri2 . . . rin

. . . .

rn1 rn2 . . . rnn


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=



0 0 . . . 0

. . . .

ai1r11 + ai2r21 + . . .+ ainrn1 ai1r12 + ai2r22 + . . .+ ainrn2 . . . ai1r1n + ai2r2n + . . .

+ainrnn

. . . .

0 0 . . . 0


⇒ Ar ∈ Ai, where each element of ith row in F.

∴ Ai is the right ideal of R. Similarly Bi is the left ideal of R.

9.3.3 Example : Let R be the ring of 2× 2 upper triangular matrices over

a field F then the subset I =

{ 0 a

0 0

∣∣∣∣∣a ∈ F
}

is an ideal of R.

Sol. Let A, B ∈ I ⇒ A =

 0 a1

0 0

, B =

 0 a2

0 0

 , a1, a2 ∈ F

A−B =

 0 a1 − a2
0 0

 ∈ I, a1 − a2 ∈ F

Ar =

 0 a1

0 0

 r1 r2

0 r3

 where r =

 r1 r2

0 r3

 ∈ R
=

 0 a1r3

0 0

 ∈ I
rA =

 r1 r2

0 r3

 0 a1

0 0

 =

 0 r1a1

0 0

 ∈ I.

Hence I is an ideal of R.

9.3.4 Example : Let R be the ring of all functions from the closed interval

[0, 1] to the field of real numbers. Let c ∈ [0, 1] and I = {f ∈ R|f(c) = 0}

132



then I is an ideal of R.

Sol. Let f, g ∈ I ⇒ f(c) = 0, g(c) = 0

(f − g)c = f(c)− g(c) = 0− 0 = 0

∴ f − g ∈ I ∀ f, g ∈ I

Let f ∈ I and r ∈ R

Consider (rf)(c) = r(c)f(c)

= r(c).0

= 0

⇒ rf ∈ I

Similarly fr ∈ I ∀ f ∈ I, r ∈ R.

Hence I is an ideal of R.

9.3.5 Example : Let R = F2 be the 2 × 2 matrix ring over a field F. Let

S =

 F F

0 F

 be the set of all upper triangular matrices over F then S is

a sub ring of R. If I =

 0 F

0 0

 then I is an ideal of S but I is neither

right nor a left ideal of R.

Sol. Let S =

{ a1 a2

0 a3

∣∣∣∣∣a1, a2, a3 ∈ F
}

be sub ring of R.

I =

{ 0 a

0 0

∣∣∣∣∣a ∈ F
}

(i) Let A =

 0 a

0 0

 , B =

 0 b

0 0

 ∈ I, a, b ∈ F

A−B =

 0 a− b

0 0

 ∈ I, a− b ∈ F
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r ∈ S ⇒ r =

 a1 a2

0 a3


Ar =

 0 a

0 0

 a1 a2

0 a3

 =

 0 aa3

0 0

 ∈ I
rA =

 a1 a2

0 a3

 0 a

0 0

 =

 0 aa3

0 0

 ∈ I
∴ I is an ideal of S.

(ii) To prove that I is neither right nor left ideal of R.

Let r ∈ R ⇒ r =

 a1 a2

a3 a4

 , ai ∈ F

Let A ∈ I ⇒ A =

 0 a

0 0

 , a ∈ F

Ar =

 0 a

0 0

 a1 a2

a3 a4

 =

 aa3 aa4

0 0

 /∈ I

rA =

 a1 a2

a3 a4

 0 a

o o

 =

 0 a1a

0 a3a

 /∈ I

∴ I is neither right nor left ideal of R.

9.3.6 Example : If A is an ideal in the ring R then the ring An of all n×n

matrices with entries from A is an ideal of Rn.

Sol. Given A is an ideal in R.

Let B1 = (bij) and C1 = (cij) be the elements of An where bij, cij ∈ A for

B1 − C1 = (bij − cij) where bij − cij ∈ A, 1 ≤ i, j ≤ n

⇒ B1 − C1 ∈ An
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Let r = (rij), rij ∈ R

B1r =


b11 b12 . . . b1n

. . . .

. . . .

bn1 bn2 . . . bnn




r11 r12 . . . r1n

. . . .

. . . .

rn1 rn2 . . . rnn



=



b11r11 + b12r21 + . . .+ a1nrn1 b11r12 + b12r22 + . . .+ b1nrn2 . . . b11r1n + b12r2n + . . .

+b1nrnn

. . . .

. . . .

bn1r11 + bn2r21 + . . .+ bnnrn1 bn1r12 + bn2r22 + . . .+ bnnrn2 . . . bn1r1n + . . .

+bnnrnn


where all the entries belongs to A. ⇒ B1r ∈ An.

Similarly rB1 ∈ An, Therefore An is an ideal of Rn.

9.3.7 Theorem : If a ring R has unity then every ideal I in the matrix

ring Rn is of the form An, where A is an ideal of R.

Proof. Let (eij), i, j = 1, 2, . . . , n denote the matrix units in Rn.

Let A =
{
a11 ∈ R

∣∣ ∑ aijeij ∈ I
}

then we claim that A is an ideal of R.

Let a11, b11 ∈ A then there exists matrices

α =
∑
aijeij and β =

∑
bijeij in I then

α− β =
∑

(aij − bij)eij ∈ I (∵ I is an ideal)

⇒ a11 − b11 ∈ A

Let r ∈ R and a11 ∈ A with
∑
aijeij ∈ I

Consider (
∑
aijeij)(re11)

= (a11e11 + a12e12 + . . .)(re11)

= a11e11re11 + a12e12re11 + . . .
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=
∑

(aijeij)re11

=
∑
ai1rei1 ∈ I (eijekr = eir if j = k) i.e., eije11 = ei1 if j = 1)

⇒ a11r ∈ A

Similarly ra11 ∈ A ∀ r ∈ R, a11 ∈ A

∴ A is an ideal of R.

Now to show that I = An. Let x =
∑
aijeij ∈ I

Let r and s be some fixed integers between 1 and n

Consider e1r(
∑
aijeij)es1

=e1r(
∑
aisei1) (eijes1 = ei1 if j = s and e1rei1 = e11 if r = i)

=
∑
e1r(aisei1)

=
∑
arse11 ∈ I

⇒ ars ∈ A for any r and s

⇒ aij ∈ A for any i and j

⇒ all the entries in the matrix x =
∑
aijeij are in A

⇒ x ∈ An
∴ I ⊂ An (15.3.7(a))

Conversely let x =
∑
aijeij ∈ An.

For aij ∈ A there exists a matrix
∑
brsers ∈ I such that b11 = aij

then ei1(
∑
brsers)e1j

= ei1(
∑
brserse1j)

= ei1(
∑
br1erj) (erse1j = erj if s = 1)

=
∑
ei1(br1erj)

= b11eij ∈ I (ei1erj = eij if 1 = r)

= aijeij ∈ I for each 1 ≤ i, j ≤ n

⇒
∑
aijeij ∈ I (∵ I is an ideal)
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⇒ x ∈ I

∴ An ⊂ I (15.3.7(b))

On using (9.3.7(a)) and (15.3.7(b)) we get An = I

9.3.8 Corollary : If D is a division ring then R = Dn has non trivial ideals.

Proof. Let I be any ideal in Dn

If I = {0} there is nothing to prove

Let I be any non zero ideal in Dn then I = An, where A is some ideal in D.

But D is a division ring

⇒ D has only trivial ideals

⇒ A = D

⇒ An = Dn

⇒ I = Dn

∴ Dn has only trivial ideals.

9.3.9 Note : (i) D has only {0} and D are right as well as left ideals. But

we have seen in the Example (15.3.2) for n > 1. Dn has nontrivial right as

well as left ideals. But from the theorem (15.3.7) since {0} and D are the

only right or left ideals.

∴ Dn cannot have non ideal right (or) left ideals which is not true.

∴ In general the theorem (15.18) is not true if the word ideal is replaced by

right or left ideals.

(ii) If R is a ring without unity then theorem (15.3.7) is not necessarily true.

i.e. R is a ring with unity is also must in the theorem (15.3.7).

9.3.10 Example : Let (R,+) be an additive group of order p, where p is

prime number. Define multiplication in R by ab = 0 ∀ a, b ∈ R. Then R

has no unity.

137



If 1 ∈ R then 1.a = a.1 = a

But by the definition of multiplication 1.a = 0

∴ R has no unity.

If X is any additive subgroup of (R,+) then X is an ideal of R.

because if x ∈ X and r ∈ R, we have

xr = 0 = rx ∈ X (0 ∈ X)

∴ X is an ideal of R.

∴ Any subset X of R is an ideal of R iff X is a subgroup of R under addition.

But R is of order p then the only subgroups of R are {0} and R itself.

∴ The only ideals of R are {0} and R itself. Then by the theorem (15.3.7)

The only ideals of R2 are (0)2×2 and R2 only (15.3.10(a))

Now consider I =

{ a b

0 0

∣∣∣∣∣a, b ∈ R
}

then I is an ideal of R2

Also I 6= {0} and I ⊂ R2 which is a contradiction to (15.3.10(a))

Therefore, in general the theorem is not true for rings which is not unity.

9.3.11 Theorem: Let (Ai)i∈∧ be a family of right (left) ideals in a ring R.

Then
⋂
i∈∧

Ai is also a right(left) ideal.

Proof. Let a, b ∈
⋂
i∈∧

Ai ⇒ a ∈ Ai, b ∈ Ai for each i

⇒ a− b ∈ Ai for each i ⇒ a− b ∈
⋂
i∈∧

Ai

Let r ∈ R and a ∈
⋂
i∈∧

Ai ⇒ r ∈ R and a ∈ Ai for each i

⇒ ra ∈ Ai for each i (Ai is an left ideal)

Similarly ar ∈ Ai for each i (Ai is an right ideal)

∴ ra ∈
⋂
i∈∧

Ai ⇒
⋂
i∈∧

Ai is a left ideal.

ar ∈
⋂
i∈∧

Ai ⇒
⋂
i∈∧

Ai is a right ideal.

9.3.12 Definition : Let S be a subset ofR. LetA = {A
∣∣ A is a right ideal of R containing S}
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then A is non empty, since R ∈ A

Let I =
⋂
A∈A

A. Since S ⊂ A for each A ∈ A

⇒ I is the smallest ideal containing S

⇒ I is an ideal generated by S.

If A contains all right ideals A, where S ⊂ A for each A ∈ A then I

is called the smallest right ideal of R containing S and is denoted by (S)r.

The smallest right ideal of R containing a subset S is called a right ideal

generated by S.

Similarly if A contains all left ideals A, where S ⊂ A for each A ∈ A

then I is called the smallest left ideal of R containing S and is denoted by

(S)l. The smallest left ideal of R containing a subset S is called a left ideal

generated by S.

If S = {a1, a2, . . . , am} is a finite set then (S)r is also written as (a1, a2, . . . , am)r.

Similarly (S)l is also written as (a1, a2, . . . , am)l. S is also written as (a1, a2, . . . , am).

9.4 Principal Ideal :

9.4.1 Definition: A right ideal I of a ring R is called finitely generated if

I = (a1, a2, . . . , am)r for some ai ∈ R, 1 ≤ i ≤ m.

9.4.2 Definition : A right ideal I of a ring R is called principal right ideal

if I = (a)r for some a ∈ R (i.e., generated by single element).

9.4.3 Note : In a similar manner we define a finitely generated left ideal,

a finitely generated ideal, a principal left ideal and a principal ideal.

9.4.4 Definition : A ring in which each ideal is principal is called a prin-

cipal ideal ring (PIR). If R is an integral domain with unity which is a PIR

then it is called principal ideal domain.

9.4.5 Example : All the ideals in the ring of integers Z are principal ideals.
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Sol. Let I be any non zero ideal in Z

Let n be the smallest positive integer in I then for any m ∈ I we write

m = nq + r where 0 ≤ r < n (by division of algorithm)

⇒ r = m− nq ∈ I (m ∈ I, I is an ideal,⇒ nq ∈ I for any q ∈ Z)

⇒ r ∈ I where 0 ≤ r < n

⇒ r = 0 (by choice of n i.e. n is the smallest positive integer in I)

⇒ m = nq

⇒ I = (n)

9.4.6 Note : Let I be an ideal in R for a, b ∈ R we define a ≡ b(mod I) if

a− b ∈ I then this congruence is an equivalence relation in R. Every equiv-

alence relation give rise to equivalence classes.

Let R/I denote the set of equivalence class and ā ∈ R/I be the equivalence

class containing a.

Consider ā ∈ R/I

Let b ∈ ā ⇒ b ≡ a(mod I)

⇒ b− a ∈ I

⇒ b− a = x, for some x ∈ I

⇒ b = a+ x, for some x ∈ I

⇒ every element of ā is of the form a+ x, for some x ∈ I

⇒ ā = a+ I

We shall define addition and multiplication in R/I

a+ b = a+ b ∀ ā, b̄ ∈ R/I and

ā.b̄ = ab ∀ ā, b̄ ∈ R/I

To show that these binary operations are well defined.

Let ā = c̄, b̄ = d̄ then a− c ∈ I, b− d ∈ I
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(a− c) + (b− d) ∈ I ⇒ (a+ b)− (c+ d) ∈ I

⇒ a+ b = c+ d

⇒ ā+ b̄ = c̄+ d̄

ab− cd=a(b− d) + (a− c)d (a− c, b− d ∈ I which is an ideal)

⇒ ab− cd ∈ I

⇒ ab = cd

⇒ āb̄ = c̄.d̄

(i) Let ā, b̄, c̄ ∈ R/I then

ā+ (b̄+ c̄) = ā+ (b+ c) = a+ (b+ c)

=(a+ b) + c

=(a+ b) + c̄ (a, b, c ∈ R)

=(ā+ b̄) + c̄

(ii) 0̄ is the additive identity in R/I

(iii) For every ā ∈ R/I we have

ā+ (−ā) = a+ (−a) = 0̄

(−ā) + ā = 0

(iv) ā+ b̄ = a+ b = b+ a

= b̄+ ā ∀ ā, b̄ ∈ R/I

(v) ā(b̄.c̄) = ā(bc) = a(bc)

= (ab)c = (ab)c̄

= (ā.b̄)c̄

(vi) ā.(b̄+ c̄) = ā.b̄+ ā.c̄ and

(b̄+ c̄).ā = b̄.ā+ c̄.ā

Then (R/I,+, .) is a ring called quotient ring modulo I.

9.4.7 Definition : Let I be an ideal of a ring R then the ring (R/I,+, .)
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is called the quotient ring modulo I.

If I = R then R/I is the zero ring.

If I = (0) then R/I is the same as the ring R which we identify a+ (0) with

a ∈ R

9.4.8 Note : If S is any subset of R then the ideal generated by S is the

smallest ideal containing S.

We shall show that

(a) =

{ ∑
i(finitesum)

riasi + ra+ as+ na
/
r, s, ri, si ∈ R, n ∈ Z

}
(a)r =

{
ar + na

/
r ∈ R, n ∈ Z

}
(a)l =

{
ra+ na

/
r ∈ R, n ∈ Z

}
If 1 ∈ R the they will become

(a) =

{ ∑
i(finitesum)

riasi
/
ri, si ∈ R

}
(a)r =

{
ar
/
r ∈ R

}
and (a)l =

{
ra
/
r ∈ R

}
In this case the symbols RaR, aR and Ra are used for (a), (a)r and (a)l re-

spectively.

Let S =

{ ∑
i(finitesum)

riasi + ra+ as+ na
/
r, s, ri, si ∈ R, n ∈ Z

}
We shall show that a ∈ S and S is the smallest ideal containing a.

Taking ri = si = r = s = 0 and n = 1 we get a ∈ S

We shall show that S is an ideal.

Consider
∑
riasi + ra+ as+ na and

∑
ri
′
asi

′
+ r

′
a+ as

′
+ n

′
a be any two

elements of S then

(
∑

finitesum

riasi + ra+ as+ na)− (
∑

finitesum

ri
′
asi

′
+ r

′
a+ as

′
+ n

′
a)

=
( ∑
finitesum

riasi−
∑

finitesum

ri
′
asi

′)
+ (r− r′)a+ (s− s′)a+ (n− n′)a ∈ S
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where r − r′ ∈ R, s− s′ ∈ R, n− n′ ∈ Z

⇒ S is a subgroup of R under addition.

Let r
′ ∈ R and

∑
finitesum

riasi + ra+ as+ na) ∈ S

Consider r
′
[
∑

finitesum

riasi + ra+ as+ na)]

=
∑

i(finitesum)

r
′
riasi + r

′
ra+ r

′
as+ r

′
na)

=
∑

j(finitesum)

rjasi + rla+ r
′
as+ r

′
(a+ a+ . . .+ n times)

where rj = r
′
ri and rl = r

′
r

= [
∑

j(finitesum)

rjasi + r
′
as] + (r1 + r

′
)a+ (r

′
a+ r

′
a+ . . .+ r

′
a) (n− 1 times)

= [(
∑

j(finitesum)

rjasi + r
′
as) + rla+ 0s+ 0a] + (0 + r

′
a+ 0s+ 0a) + . . .+

(0 + r
′
a+ 0s+ 0a) + . . . (n− 1) times

∈ S (∵ S is closed under addition)

Similarly [
∑
riasi + ra+ as+ na]r

′ ∈ S

∴ S is an ideal.

Suppose S
′

is another ideal of R containing a i.e. a ∈ S ′

then ra ∈ S
′ ∀ r ∈ R, and as ∈ S

′ ∀ s ∈ R, na ∈ S
′ ∀ n ∈ Z and∑

riasi ∈ S
′

for risi ∈ R

⇒
∑
riasi + ra+ as+ na ∈ S ′

⇒ S ⊂ S
′

⇒ S = (a)

9.4.9 Example : Let I be a right (left) ideal of R and it contains a unit of

R then I = R

Sol. Let I be a right ideal of R ⇒ I ⊂ R

143



Let u be any unit in I ⇒ u−1 exists and u−1 ∈ R

⇒ uu−1 = 1 ∈ I (∵ I is right ideal)

∴ 1 ∈ I then I = R

9.4.10 Example : Let (n) = {na|a ∈ Z} be an ideal in Z. If n 6= 0 then

the quotient ring Z/(n) is Zn

Sol. Consider Z/(n) = {a+ (n)
∣∣ a ∈ z}

=
{

0 + (n), 1 + (n), . . . , (n− 1) + (n)
}

=
{

0̄, 1̄, . . . . . . , n− 1
}

= Zn

9.4.11 Example : Let R be a ring with unity and let R[x] be the polyno-

mial ring over R. Let I = (x) be the ideal in R[x] consisting of the multiples

of x then the quotient ring R[x]/I = {ā | a ∈ R}

Sol. Let I = (x) then x ∈ I ⇒ x̄ = x+ I =I

⇒ x̄ = 0̄

Consider any element a+ bx+ cx2 + . . . . . . ∈ R[x]/I then

a+ bx+ cx2 + . . . . . . = ā+ b̄x̄+ c̄x2 + . . . . . .

= ā (x̄ = 0̄)

∴ R[x]/I = {ā | a ∈ R}

9.4.12 Example : Find the quotient ring R[x]/(x2 + 1)

Sol. x2 + 1 ∈ (x2 + 1)

⇒ x2 + 1 = 0̄

⇒ x2 + 1̄ = 0̄

⇒ x2 = 0̄− 1̄

= −1

x3 = x2x = x2.x̄ = −x and x4 = x2x2 = x2.x2 = (−1).(−1) = 1̄
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Also x5 = x2x3 = (−1)(−x) = x̄

In general xn = ± 1̄ if n is even

= ± x̄ if n is odd.

Let a+ bx+ cx2 + . . . . . . be any element of R[x]/(x2 + 1) then

a+ bx+ cx2 + . . . . . . = ā+ bx+ cx2 + . . . . . .

= ā+ b̄x̄+ c̄x2 + . . . . . .

= ā+ b̄x̄+ c̄(−1̄) + d(−x) + e(1) + . . . . . .

= (ā− c̄+ ē) + (b̄− d̄+ f̄)x̄

= ᾱ + β̄x̄ where α = a− c+ e . . . . . . ∈ R

β = b− d+ f . . . . . . ∈ R

∴ R[x]/(x2 + 1)=
{
ᾱ + β̄x

/
α, β ∈ R

}
where x2 = −1

9.4.13 Note : R[x]/(x2 + 1) is the field of complex numbers where ᾱ, α ∈ R

is identified with α and x̄ is identified with
√
−1.

9.4.14 Example : Let R =

 Z Q

0 0

 and let A =

 0 Q

0 0

 be an

ideal of R then R/A =

{ n 0

0 0

/n ∈ Z}

Sol. Let

 0 x

0 0

 ∈
 0 Q

0 0

, where x ∈ Q

i.e.

 0 x

0 0

 ∈ A, where A is an ideal of R ⇒

 0 x

0 0

 = 0̄

Consider any element

 n x

0 0

 ∈ R/A then n x

0 0

 =

 n 0

0 0

+

 0 x

0 0

=

 n 0

0 0

+0̄

(
∴

 0 x

0 0

 = 0̄

)
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=

 n 0

0 0


∴ R/A =

{ n 0

0 0

 ∣∣∣∣∣ n ∈ Z
}

9.4.15 Note : If the element

 n 0

0 0

 is identified with n ∈ Z, then R/A

is identified with ring of integers, where

 n 0

0 0

 is identified with n.

9.4.16 Example : Find the non trivial (i) right ideals

(ii) ideals of the ring R =

 Z Q

0 0


Sol. (i) Let A be any non zero right ideal of R

Let X =

{
n ∈ Z

∣∣∣∣∣
 n a

0 0

 ∈ A for some a ∈ Q

}
then X is a subgroup

of Z under addition. Let n1, n2 ∈ X

n1 ∈ X ⇒

 n1 a1

0 0

 ∈ A, where n1 ∈ Z, a1 ∈ Q

n2 ∈ X ⇒

 n2 a2

0 0

 ∈ A, where n2 ∈ Z, a2 ∈ Q

⇒

 n1 a1

0 0

−
 n2 a2

0 0

 ∈ A (A is a right ideal)

⇒

 n1 − n2 a1 − a2
0 0

 ∈ A
⇒ n1 − n2 ∈ X

∴ X is a subgroup of Z

Since every subgroup of Z is of the form nZ, for some n ∈ Z
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Let X = noZ, for some no ∈ Z

X =

{
n ∈ Z :

 n a

0 0

 ∈ A}
Case (1) X 6= (0) i.e., n0 6= 0

We shall show that A =

 n0Z Q

0 0


Let a ∈ Q be such that

 n0 a

0 0

 ∈ A. Let z ∈ Z and q ∈ Q then n0Z q

0 0

 =

 n0 a

0 0

 Z q/n0

0 0

 ∈ A
(
A is right ideal and

 n0 a

0 0

 ∈ A and

 Z q/n0

0 0

 ∈ R)

⇒ any element of

 n0Z q

0 0

 is in A

⇒

 n0Z Q

0 0

 ⊂ A

But A ⊂

 n0Z Q

0 0

 Since x = n0Z

⇒ A =

 n0Z Q

0 0

. Also, we have seen that every element of A n0Z q

0 0

 =

 n0 a

0 0

 Z q/n0

0 0


=

 n0 a

0 0

 r where r =

 Z q/n0

0 0

 ∈ R
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⇒ A is generated by

 n0 a

0 0


⇒ A is a principal right ideal.

case(2) Let X = (0) i.e. n0 = 0

Let K =
{
q ∈ Q

/ 0 q

0 0

 ∈ A. Then K is a subgroup of Q

For q1, q2 ∈ K ⇒

 0 q1

0 0

 ,

 0 q2

0 0

 ∈ F.
⇒

 0 q1 − q2
0 0

 ∈ A ( ∴ A is an ideal) ⇒ q1 − q2 ∈ K

∴ A =

 0 K

0 0

 , where K ⊂ Q

(ii) The non trivial right ideals

A =

 n0Z Q

0 0

 , n0 6= 0 ∈ Z and

A =

 0 K

0 0

, where K is additive subgroup of Q, R are also left ideals.

Consider

 n1 q1

0 0

 n0Z q

0 0

 =

 n1n0Z n1q

0 0


=

 n0(n1Z) q
′
1

0 0

 ∈ A ∀ A =

 n1 q1

0 0

 ∈ R
⇒ A is left ideal of R

Similarly

 0 K

0 0

 is also left ideal of R.
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∴ Even if R is non commutative we have right ideals which are also left

ideals. But each left ideal of R is not a right ideal

Consider A =

{ n0m ma

0 0

 /
m ∈ Z

}
where n0 and a are fixed ele-

ments in Z and Q. Then A is a left ideal of R but A is not a right ideal of

R.

9.4.17 Example : Let R be a commutative ring with unity. Suppose R

has no non trivial ideals then prove that R is a field.

Sol. Let R be a commutative ring with unity

Let R has no non trivial ideals then the ideals of R are (0) and itself. We

shall show that every non zero element in R has multiplicative inverse

Let a be any non zero element of R.

Consider the left ideal Ra = {ra : r ∈ R} of R.

Since R is commutative then Ra is also right ideal of R

⇒ Ra is an ideal of R

1 ∈ R ⇒ a = 1a ∈ Ra where a 6= 0

⇒ Ra 6= {0}

⇒ Ra = R only (since {0}, R are the only ideals of R)

Since 1 ∈ R then 1 = ba for some b ∈ R

⇒ ab = 1 (R is commutative)

⇒ b = a−1

∴ R is a field.

9.4.18 Note : (i) Conversely if R is a field then R is a division ring and

hence it has no proper ideals.

(ii) Every field is a principal ideal ring.

9.5 Summary
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In this lesson we have defined ideals of rings. Also we have defined rings

of matrices. At end of the section we have introduced the notion of quotient

rings.

9.6 Model Examination Questions

(1) Let R be a commutative ring with unity. Suppose R has no nontrivial

ideals then prove that R is a field.

(2) Find all ideal in a pollynomial ring F [x] over a field F .

(3) Find right ideals, left ideals and ideals of a ring R =

 Q Q

0 0


9.7 Glossary

Ideal of rings, rings of matrices, principal ideal rings.
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LESSON-10

HOMOMORPHISMS OF RINGS

10.1 Introduction : In this lesson, we define homomorphism between

two rings. Further we established the fundamental theorem of homomor-

phism and the correspondence theorem. Moreover we introduce the notion

of anti-homomorphism.

10.2 Homomorphism of Rings

10.2.1 Definition : Let f be a mapping from a ring R into a ring S such

that

(i) f(a+ b) = f(a) + f(b) ∀ a, b ∈ R

(ii) f(ab) = f(a)f(b) ∀ a, b ∈ R

Then f is called a homomorphism of R into S.

If f is one-one then f is called an isomorphism (monomorphism) from R into

S. In this case f is called an embedding of R into S (or R is embeddable in

S). We also say that S cotains a copy of R and R may be identified with a

subring of S. The symbol R ⊂ S means that R is embeddable in S.

10.2.2 Note : (i) If a homomorphism f from a ring R into a ring S is

both 1− 1 and onto then there exists a homomorphism g from S into R that

is also 1 − 1 and onto. In this case we say that the two rings R and S are

isomorphic. It is denoted by R ' S.

(ii) If R ' S then S ' R. Also the identity mapping gives R ' R for any

ring. It is easy to verify that if f : R → S and g : S → T are isomorphisms

of R onto S and S onto T respectively then gf is also a isomorphism of R

onto T i.e., R ' S and S ' T then R ' T. Therefore isomorphism is an

equivalence relation in the class of rings.

10.2.3 Theorem : Let f : R → S be an isomorphism of a ring R into a
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ring S then we have the following

(i) If 0 is the zero of R then f(0) is the zero of S.

(ii) If a ∈ R then f(a) = −f(a).

(iii) The set {f(a)|a ∈ R} is a subring of S is called the homomorphic image

of R by the mapping f and is denoted by Imf or f(R).

(iv) The set {a ∈ R|f(a) = 0} is an ideal in R called the kernel of f and is

denoted by kerf or f−1(0).

(v) If 1 ∈ R then f(1) is the unity of the subring f(R).

(vi) If R is commutative then f(R) is commutative.

Proof.(i) Let a ∈ R

Consider f(a) = f(a+ 0) = f(a) + f(0) (f is homomorphism)

Similarly f(a) = f(0) + f(a)

Therefore, f(0) is the zero of S we denote f(0) = 0.

(ii) Consider f(0) = f(a+ (−a)) = f(a) + f(−a)

Therefore f(−a) = −f(a)

(iii) f(R) = {f(a)|a ∈ R}

Let f(a), f(b) ∈ R where a, b ∈ R

Consider f(a)− f(b) = f(a− b) ∈ f(R) (since a− b ∈ R)

Similarly f(a)f(b) = f(ab) ∈ f(R) (since ab ∈ R)

Therefore f(R) is a subring of S.

(iv) Let kerf= {a ∈ R|f(a) = 0}

Let a, b ∈ kerf ⇒ f(a) = 0, f(b) = 0

Consider f(a− b) = f(a)− f(b) (∵ f is homomorphism)

= 0− 0 = 0. Therefore a− b ∈ kerf .

Consider f(ar) = f(a)f(r) = 0f(r) = 0. Therefore ar ∈ kerf .
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Similarly ra ∈ kerf . Therefore kerf is an ideal of R

(v) Let a ∈ R. Consider f(a)f(1) = f(a.1) = f(a)

Similarly f(1)f(a) = f(1.a) = f(a). Therefore f(1) is the identity of f(R)

(vi) Let f(a), f(b) ∈ f(R) where a, b ∈ R

f(a)f(b) = f(ab)

= f(ba) (ab = ba ∀ a, b ∈ R)

= f(b)f(a)

Therefore f(R) is commutative.

10.2.4 Theorem : Let f : R → S be a homomorphism of a ring R into a

ring S then kerf = (0) iff f is 1− 1.

Proof. (i) Let kerf = {0}

If f(a) = f(b) ⇒ f(a)− f(b) = 0

⇒ f(a− b) = 0

⇒ a− b = 0 (kerf = (0))

⇒ a = b. (∵ f is 1− 1)

(ii) If f is 1− 1 then to prove that kerf = {0}

Let a ∈ kerf ⇒ f(a) = 0 ⇒ f(a) = f(0) ⇒ a = 0 (∵ f is 1− 1)

Therefore kerf = {0}

10.2.5 Theorem : Let N be an ideal in a ring R then ∃ a onto homomor-

phism from R→ R/N , where R/N is the quotient ring of R modulo N .

(It is called the canonical or natural homomorphism)

Proof. Let f : R→ R/N defined by f(x) = x+N = x̄ ∀ x ∈ R

f is homomorphism : f(x+y) = x+ y = x̄+ ȳ = f(x)+f(y) ∀ x, y ∈ R

Also f(xy) = xy = x̄ȳ = f(x).f(y) ∀ x, y ∈ R.

Therefore f is homomorphism.
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f is onto : Let x̄ ∈ R/N ∃ x ∈ R 3 f(x) = x̄. Therefore f is onto.

⇒ R/N is a homomorphic image of R.

Hence there exists onto homomorphism from R→ R/N .

⇒ Every homomorphic image of a ring is of the type a quotient of R modulo

some ideal of R. This homomorphism is called natural homomorphism or

canonical homomorphism.

10.2.6 Theorem : (Fundamental Theorem of Homomorphisms)

Let f be a homomorphism of a ring R into a ring S with kernel N then

R/N ' Imf

Proof. Define g : R/N → Imf by g(a+N) = g(ā) = f(a)

g is well defined : Let a+N = b+N

⇒ (a− b) +N = N

⇒ a− b ∈ N

⇒ f(a− b) = 0

⇒ f(a)− f(b) = 0 (f is homomorphism)

⇒ f(a) = f(b)

⇒ g(a+N) = g(b+N)

g is homomorphism : Consider g(ā+b̄) = g(a+ b) = f(a+b) = f(a)+f(b)

= g(ā) + g(b̄).

Also g(ā.b̄) = g(ab) = f(ab) = f(a)f(b) = g(ā)g(b̄) ∀ ā, b̄ ∈ R/N .

Therefore g is homomorphism.

g is onto : Let b ∈ Imf ∃ a ∈ R 3 f(a) = b

⇒ g(ā) = f(a) = b. Therefore g is onto.

g is 1-1 : Let ā, b̄ ∈ R/N.

Let g(ā) = g(b̄) ⇒ f(a) = f(b)
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⇒ f(a)− f(b) = 0

⇒ f(a− b) = 0

⇒ a− b ∈ N

⇒ a ≡ b(modN)

⇒ ā = b̄.

Therefore R/N ' Imgf .

10.2.7 Note : This theorem can also be stated as given a homomorphism of

rings f : R→ S there exists a unique injective homomorphism g : R/kerf →

S such that f = gη, where η is the canonical homomorphism.

Proof. g : R/kerf → S is a homomorphism defined by g(ā) = f(a) then g

is injective.

Also f = gη. Since f(a) = g(ā) = g(η(a)) (η(a) = a+N = ā ∀ a ∈ R)

g is unique : Let f = hη, where h : R/kerf → S is a homomorphism then

gη = hη ⇒ gη(a) = hη(a) ∀ a ∈ R

⇒ g(ā) = h(ā) ∀ a ∈ R/kerf

⇒ g = h

10.2.8 Note : Let f be a mapping from a set R into a set S and A ⊂ S.

Let f−1(A) = {r ∈ R|f(r) ∈ A} then

(1) f−1 is a mapping of subsets of S into subsets of R.

(2) f(f−1(A)) ⊂ A

(3) If f is onto then A ⊂ f(f−1(A))

(4) If f is onto then f(f−1(A)) = A

(5) If X is any subset of R then X ⊂ f−1(f(X)).

10.3 Correspondence Theorem :

10.3.1 Theorem : Let f : R→ S be a homomorphism of a ring R onto a
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ring S and let N = kerf . Then the mapping F : A→ f(A) defines one-one

correspondence from the set of all ideals (right ideals, left ideals) in R that

contain N onto the set of all ideals (right ideals, left ideals) in S. It prserves

ordering in the sense that A ( B iff f(A) ( f(B).

Proof. Let f : R → S be a homomorphism of a ring R onto a ring S. Let

N = kerf . Let X be any arbitary ideal in S and the set A = f−1(X). Now

show that f−1(X) is an ideal in R, where

f−1(X) = {x ∈ R/f(x) ∈ X}

Let a, b ∈ f−1(X) ⇒ f(a), f(b) ∈ X

⇒ f(a)− f(b) ∈ X (∵ X is an ideal of S)

⇒ f(a− b) ∈ X

⇒ a− b ∈ f−1(X)

Let a ∈ f−1(X) and r ∈ R ⇒ f(a) ∈ X and f(r) ∈ S

⇒ f(a)f(r) ∈ X (∵ X is an ideal of S)

⇒ f(ar) ∈ X

⇒ ar ∈ f−1(X)

Similarly ra ∈ f−1(X). Therefore f−1(X) is an ideal in R.

Let A be an ideal in R then f(A) is an ideal in S for if f(a), f(b) ∈ f(A),

where a, b ∈ A. Consider f(a)− f(b) = f(a− b) ∈ f(A) (∵ a− b ∈ A)

Let f(a) ∈ f(A) and s ∈ S. Since f is onto from R to S ⇒ s ∈ S has pre

image say r in R such that f(r) = s then f(a)s = f(a)f(r) = f(ar) ∈ f(A).

Similarly sf(a) ∈ f(A). Therefore f(A) is an ideal in S

Let R
′
= {A : A is an ideal in R containing N = kerf} and

S
′
={all ideals of S }. Define F : R

′ → S
′

by F (A) = f(A)

F is onto: Let X ∈ S ′ ⇒ X is an ideal in S ⇒ f−1(X) is an ideal in R
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Let A = f−1(X). We shall show that f(f−1(X)) = X.

Let f(a) ∈ f(f−1(X)), where a ∈ f−1(X)

Since a ∈ f−1(X) ⇒ f(a) ∈ X

⇒ f(f−1(X)) ⊂ X (10.3.1(a))

Let x ∈ X then since f is onto there exists a ∈ R such that f(a) = x

⇒ f(a) ∈ X ⇒ a ∈ f−1(X) then x = f(a) ∈ f(f−1(X))

⇒ X ⊂ f(f−1(X)) (10.3.1(b))

On using (10.3.1(a)) and (10.3.1(b)) we get X = f(f−1(X)), where f−1(X) =

A is an ideal inR. We shall show thatN ⊂ A, whereA = {x ∈ R : f(x) ∈ X}

Let x ∈ N then f(x) = 0̄ (∴ X is an ideal of S ⇒ 0̄ ∈ X)

⇒ f(x) ∈ X ⇒ x ∈ f−1(X) ⇒ x ∈ A. Therefore N ⊂ A

∴ for every X ∈ S
′ ∃ A = f−1(X) ∈ R

′
such that F (A) = f(A) =

f(f−1(X)) = X. Hence F is onto.

F is one-one: Let F (A) = F (B), where A,B are in R
′

i.e., A and B are

the ideals of R containing N .

F (A) = F (B)⇒ f(A) = f(B)

we shall show that f−1(f(A)) = A

Let a ∈ A ⇒ f(a) ∈ f(A) ⇒ a ∈ f−1(f(A))

⇒ A ⊂ f−1(f(A)) (10.3.1(c))

Let x ∈ f−1(f(A)) ⇒ f(x) ∈ f(A)

⇒ f(x) = f(a), for some a ∈ A

⇒ f(x)− f(a) = 0̄

⇒ f(x− a) = 0̄

⇒ x− a ∈ N = kerf but N ⊂ A

⇒ x− a ∈ A
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⇒ x ∈ A

⇒ f−1(f(A)) ⊂ A (10.3.1(d))

On using (10.3.1(c)) and (10.3.1(d)), we get A = f−1(f(A)).

Similarly f−1(f(B)) = B

∴ f(A) = f(B) ⇒ f−1(f(A)) = f−1(f(B))

⇒ A = B. Therefore F is one-one.

⇒ ∃ a one-one correspondence between the ideals of R containing N and

ideal of S
′
.

Let A and B be an ideals in R such that A ( B i.e., A ⊂ B, but A 6= B

⇒ f(A) ⊂ f(B), because if f(a) ∈ f(A), where a ∈ A and A ⊂ B ⇒ a ∈ B

⇒ f(a) ∈ f(B) ⇒ f(A) ⊂ f(B)

if f(A) = f(B) then f−1(f(A)) = f−1(f(B))⇒ A = B which is not true.

Therefore f(A) ( f(B)

Conversely let f(A) ( f(B)

⇒ f(A) ⊂ f(B)

⇒ f−1(f(A)) ⊂ f−1(f(B)) ⇒ A ⊂ B.

Also A 6= B for if A = B then f(A) = f(B) which is not true. Therefore

A 6= B i.e., A ( B.

10.3.2 Theorem : If K is an ideal in a ring R then each ideal (right or

left ideal) in R/K is of the form A/K where A is an ideal (right or left ideal)

in R containing K.

Proof. Consider the canonical homomorphism f : R → R/K which is an

onto homomorphism. Then by the correspondence theorem any ideal in R/K

is of the form f(A), where A is any ideal containing kerf = K then K is an

ideal of A (A is an ideal of R and K is an ideal of R ⇒ K ⊂ A)
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and f(A) = {f(x) : x ∈ A} = {x+K : x ∈ A} = A/K.

⇒ any ideal in R/K is of the form A/K where A is an ideal containing K.

10.3.3 Definition : Let R and S be rings. A mapping f : R → S is an

anti-homomorphism if f(x+ y) = f(x) + f(y) and f(xy) = f(y)f(x) for all

x, y ∈ R. An anti-homomorphism which is both 1− 1 and onto is called an

anti-isomorphism.

10.3.4 Example : Let R = (R,+, .) be a ring. Define a binary operation

o in R as x o y = y.x for all x, y ∈ R then prove that (R,+, o) is a ring.

Sol. (R,+) is an abelian group

Let x, y ∈ R ⇒ y.x ∈ R (∵ (R,+, .) is a ring)

⇒ x o y ∈ R

Consider x o (y o z) = x o (zy)

= (zy)x

= z(yx)

= z(x o y)

=(x o y)o z

Also x o(y + z) = (x o y) + (x o z) and (y + z)o x = (y o x) + (z o x)

Therefore (R,+, o) is a ring.

10.3.5 Definition : Let (R,+, .) be a ring then the opposite ring of R

written Rop, is defined to be the ring (R,+, o) where x o y = y.x for all

x, y ∈ R.

10.3.6 Example : Prove that the homomorphism from the ring of integers

Z to Z are the identity and zero mappings only.

Sol. If f is a zero mapping then f is a homomorphism,

since f(a+ b) = 0 = 0 + 0 = f(a) + f(b) ∀ a, b ∈ Z
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and f(ab) = 0 = f(a)f(b) ∀ a, b ∈ Z

If f is a non zero homomorphism then consider

(f(1))2 = f(1)f(1) = f(1.1) = f(1) and f(1) 6= 0

because if f(1) = 0 for any x ∈ Z, we have

f(x) = f(1.x) = f(1)f(x) = 0f(x) = 0 ⇒ f = 0 which is not true.

∴ f(1) 6= 0 and f(1)2 = f(1).

i.e. f(1) is a non zero idempotent element in f(Z) ⊂ Z.

But the only nonzero idempotent element in Z is 1 ⇒ f(1) = 1

Now consider f(n) = (1 + 1 + 1 + . . .+ 1) (n times if n > 0)

= f(1) + f(1) + . . .+ f(1) (n times)

= n if n > 0 (∵ f(1) = 1)

Also f(n) = 0 if n = 0.

If n < 0 then

f(n) = (−1− 1− 1− . . .− 1)

= f(−1) + f(−1) + . . .+ f(−1) (n times)

= (−1) + (−1) + (−1) + . . .+ (−1) (n times)

= −n if n < 0

∴ f(n) = n ∀ n ∈ Z. Therefore f is identity mapping.

10.3.7 Example : Let A and B be ideals in R such that B ⊆ A then prove

that R/A ' (R/B)/(A/B).

Sol. Define a mapping f : R/B → R/A by f(x + B) = x + A ∀ x ∈ R

then f is well defined if x1+B = x2+B then x1−x2+B = B ⇒ x1−x2 ∈ B

But B ⊆ A ⇒ x1 − x2 ∈ A

⇒ x1 − x2 + A = A

⇒ x1 + A = x2 + A
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⇒ f(x1 +B) = f(x2 +B)

We shall show that f is an onto homomorphism

Consider f((x1 +B) + (x2 +B)) = f(x1 + x2 +B)

= x1 + x2 + A

= (x1 + A) + (x2 + A)

= f(x1 +B) + f(x2 +B)

Also f((x1 +B).(x2 +B))= f(x1x2 +B)

=x1x1 + A

=(x1 + A)(x2 + A)

=f(x1 +B)f(x2 +B)

∴ f is a homomorphism.

f is onto: Since for every x + A ∈ R/A, we have x ∈ R such that

f(x+B) = x+ A

⇒ f is onto.

Now kerf = {x+B ∈ R/B : f(x+B) = 0̄}

={x+B : x+ A = A}

={x+B : x ∈ A} =A/B

Then by first isomorphism theorem we get, (R/B)/(A/B) ' R/A.

10.3.8 Example : Prove that any ring R can be embedded in a ring S

with unity.

Sol. Let S be the cartesian product of R and the set of integers Z

i.e., S = R× Z.

Define the binary operations + and . in S by (a,m) + (b, n) = (a+ b,m+ n)

and (a,m).(b, n) = (ab+ na+mb,mn), where a, b ∈ R and m, n ∈ Z

Consider (a,m)− (b, n) = (a− b,m− n), where, a− b ∈ R and m− n ∈ Z
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∴ S is an abelian group under addition and also

(a,m).(b, n) = (ab + na + mb,mn) ∈ R × Z (∵ ab + na + mb ∈ R and

mn ∈ Z, where ab ∈ R, na = a+ . . .+ a ∈ R, mb = b+ . . .+ b ∈ R)

Therefore S is a ring.

The unity is given by (0, 1), because (a,m).(0, 1) = (0 + 1a+ 0,m1) = (a,m)

Similarly (0, 1).(a,m) = (0 + 0 + a,m)=(a,m)

Define a mapping f : R → S by f(a) = (a, 0) ∀ a ∈ R then f is a homo-

morphism.

Consider f(a+ b) = (a+ b, 0)

=(a, 0) + (b, 0)

=f(a) + f(b) ∀ a, b ∈ R

f(ab) = (ab, 0) = (a, 0)(b, 0)=f(a)f(b) ∀ a, b ∈ R

f is one-one: Let f(a) = f(b) ⇒ (a, 0) = (b, 0) ⇒ a = b

Therefore f is an embedding ring of R into S.

10.3.9 Example : Find all ideals of Z/(10).

Sol. Z/(10) = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄, 9̄}

(0) and Z/(10) are trivial ideals.

Also (2̄)= {0̄, 2̄, 4̄, 6̄, 8̄} and (5̄)= {0̄, 5̄} are also ideal of Z/(10)

Therefore the ideals of Z/(10) are (0), {0̄, 2̄, 4̄, 6̄, 8̄}, {0̄, 5̄} and Z/(10).

10.3.10 Example : Let R be a ring then prove that (Rn)op ' (Rop)n

Sol. Define a mapping f : (Rn)op → (Rop)n by f(A) = tA, the transpose

of A. Recall that as sets R = Rop and Rn = (Rn)op then by the definition of

the transpose of a matrix tA+B = tA + tB so f(A+B) = f(A) + f(B).

We now show that f(A o B) = f(A)f(B), where the multiplication of ma-

trices f(A) and f(B) is in the ring (Rop)n
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Assume A = (aij), B = (bij)

f(A) = tA = (a
′
ij) and f(B) = tB = (b

′
ij) then

a
′
ij = aji and b

′
ij = bji for all 1 ≤ i, j ≤ n

Now f(A o B) = f(BA) = tBA

The (i, j) entry of tBA is the (j, i) entry of BA which is given by

n∑
k=1

bjkaki =
n∑
k=1

aki o bjk =
n∑
k=1

a
′

ik o b
′

kj = (i, j) entry of tAtB ∈ (Rop)n

Hence tBA = tAtB

∴ f(A o B) = f(A)f(B)

f is one-one: If f(A) = f(B) ⇒ tA = tB ⇒ A = B. Also f is onto.

Hence (Rn)op ' (Rop)n

10.4 Summary

In this lesson we have defined homomorphism of rings. Also we have

observed that the kernel of homomorphism is {0} if and only if it is one-one.

Further we have proved fundamental theorem of homomorphism and corre-

spondence theorem.

10.5 Model Examination Questions

(1) Show that any nonzero homomorphism of a field F into a ring R is

one-one.

(2) Let f : F → F be a nonzero homomorphism of a field F into itself then

show that f need not be onto.

(3) Let R be a ring. Show that R is anti-isomorphic to Rop.

10.6 Glossary

homomorphism of rings, isomorphism of rings, correspondence theorem, anti

homomorphism of rings.
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LESSON-11

Sum and Direct Sum of Ideals

11.1 Introduction : In this lesson, we study sum and direct sum of ideals.

11.2 Definition : Let A1, A2, . . . , An be a family of right ideals in a ring

R. Then the smallest right ideal of R containing each Ai, 1 ≤ i ≤ n

(i.e., the intersection of all right ideals in R containing each Ai) is called the

sum of A1, A2, . . . , An and is denoted by A1 + A2 + . . .+ An.

11.3 Theorem : If A1, A2, . . . , An are right ideals in a ring R, then

S = {a1 + a2 + . . . + an/ai ∈ Ai, 1 ≤ i ≤ n} is the sum of right ideals

A1, A2, . . . , An.

Proof. Let S = {a1 + a2 + . . .+ an/ai ∈ Ai, 1 ≤ i ≤ n}.

To prove that S is an ideal in R

Let x, y ∈ S and r ∈ R, then x = a1 +a2 + . . .+an and y = b1 + b2 + . . .+ bn

where ai, bi ∈ Ai, 1 ≤ i ≤ n

Now x− y = (a1 + a2 + . . .+ an)− (b1 + b2 + . . .+ bn)

= (a1 − b1) + (a2 − b2) + . . .+ (an − bn) ∈ S

⇒ x−y ∈ S. (since Ai is an ideal, ai, bi ∈ Ai⇒ ai−bi ∈ Ai, 1 ≤ i ≤ n)

Also xr = (a1 + a2 + . . .+ an)r = a1r + a2r + . . .+ anr

⇒ xr ∈ S (since air ∈ Ai for 1 ≤ i ≤ n)

Thus S is a right ideal of R.

If a1 ∈ A1 then a1 can be written as a1 = a1+0+ . . .+0 and by the definition

of S we get a1 ∈ S ⇒ A1 ⊂ S.

Similarly A2, A3, . . . , An are contained in S.

Let T be any right ideal of R contained each Ai then a1, a2, . . . , an ∈ T

⇒ a1 + a2 + . . .+ an ∈ T (since T is an ideal). Therefore S ⊂ T .

∴ S is the smallest right ideal of R containing each Ai. i.e., S is the inter-
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section of all the right ideal in R containing each Ai. Therefore S is the sum

of the right ideals A1, A2, . . . , An.

11.4 Note : The sum of right (left) ideals A1, A2, . . . , An in a ring R is

denoted by A1 + A2 + . . .+ An =
n∑
i=1

Ai.

11.5 Definition : A sum A =
n∑
i=1

Ai of right (left) ideal in R is called

a direct sum if each element a ∈ A is uniquely expressible in the from
n∑
i=1

ai, where ai ∈ Ai, 1 ≤ i ≤ n. If the sum A =
n∑
i=1

Ai is a direct sum

we write it as A = A1 ⊕ A2 ⊕ . . .⊕ An = ⊕
n∑
i=1

Ai.

11.6 Theorem : Let A1, A2, . . . , An be right ( left) ideals in a ring R then

the following are equivalent

(i) A =
n∑
i=1

Ai is a direct sum.

(ii) If 0 =
n∑
i=1

ai, ai ∈ Ai then ai = 0, for i = 1, 2, . . . , n.

(iii) Ai ∩
n∑
j=1
j 6=i

Aj = (0), i = 1, 2, . . . , n

Proof. (i) ⇒ (ii)

Assume that (i) is true. Suppose
n∑
i=1

ai = 0 and since A is direct sum of

A1, A2, . . . , An, each element of A has a unique representation

we have 0 ∈ A and 0 = 0 + 0 + . . .+ 0

∵ a1 + a2 + . . .+ an = 0 = 0 + 0 + . . .+ 0

⇒ a1 = a2 = . . . = an = 0. Thus
n∑
i=1

ai = 0 ⇒ ai = 0, for i = 1, 2, . . . , n.

(ii) ⇒ (iii)

Assume that (ii) is ture. Let x ∈ Ai ∩
n∑
j=1
j 6=i

Aj then x ∈ Ai and x ∈
n∑
j=1
j 6=i

Aj

⇒ x = a1 + a2 + . . .+ ai−1 + ai+1 + . . .+ an

⇒ 0 = a1 + a2 + . . .+ ai−1 + (−x) + ai+1 + . . .+ an
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from (ii) we get each aj = 0, for j = 1, 2, . . . , n, j 6= i and −x = 0 ⇒ x = 0

Thus Ai ∩
n∑
j=1
j 6=i

Aj = (0).

(iii) ⇒ (i)

Assume that (iii) is ture. Let a ∈ A =
n∑
i=1

Ai and assume that a has two

representations say a = a1 + a2 + . . . + an and a = b1 + b2 + . . . + bn, where

ai, bi ∈ Ai for 1 ≤ i ≤ n

⇒ (a1 + a2 + . . .+ an)− (b1 + b2 + . . .+ bn) = 0

⇒ (a1 − b1) + (a2 − b2) + . . .+ (an − bn) = 0

⇒ a1 − b1 = −(a2 − b2)− . . .− (an − bn)

Now A1 is an ideal of R, we have a1 − b1 ∈ A1 and

−(a2 − b2)− . . .− (an − bn) ∈ A2 + A3 + . . .+ An =
n∑
j=2

Ai

⇒ a1 − b1 ∈ A1 ∩
n∑
j=2

Aj, but by (iii) we have Ai ∩
n∑
j=1
j 6=i

Aj = (0)

Therefore a1 − b1 = 0 ⇒ a1 = b1. Similarly we get a2 = b2, . . . , an = bn.

Hence each a ∈ A =
n∑
i=1

Ai has a unique representation. ∴ A is a direct sum.

11.7 Theorem : Let R1, R2, . . . , Rn be a family of rings and let R = R1×

R2 × . . .×Rn be their direct product. Let R∗i = {(0, . . . , 0, ai, 0, . . . , 0)/ai ∈

Ri} then R = ⊕
n∑
i=1

R∗i is a direct sum of ideals R∗i and R∗i ' Ri as rings.

On the other hand if R = ⊕
n∑
i=1

Ai, a direct sum of ideal of R then R '

A1×A2× . . .×An the direct product of the Ai’s considered as rings on their

own right.

Proof. Clearly R∗i ’s are ideals in R and R = R∗1 +R∗2 + . . .+R∗n.

We prove that R is a direct sum of ideals R∗i

Let x ∈ R∗i∩
n∑
j=1
j 6=i

R∗j then x = (0, 0, . . . , ai, 0, . . . , 0) = (a1, a2, . . . , ai−1, 0, ai+1, . . . , an)
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⇒ ai = 0 and hence x = 0. Therefore R = ⊕
n∑
i=1

R∗i

For the second part we note that, if x ∈ R then x can be uniquely expressed

as a1 + a2 + . . .+ an, ai ∈ Ai, 1 ≤ i ≤ n.

Define a mapping f : ⊕
n∑
i=1

Ai → A1 × A2 × . . .× An by

f(a1 + a2 + . . .+ an) = (a1, a2, . . . , an), f is well defined since
n∑
i=1

Ai is direct

sum. It is also clear that f is both one-one and onto.

f is homo : Let x, y ∈
n∑
i=1

Ai then x = a1 + a2 + . . . + an and y =

b1 + b2 + . . . + bn, where ai, bi ∈ Ai, 1 ≤ i ≤ n, it is easy to see that

f(x+ y) = f(x) + f(y).

Now to show that f(xy) = f(x)f(y), since ai, bi ∈ Ai, 1 ≤ i ≤ n then for

i 6= j, aibj = 0 and aibj ∈ Ai ∩ Aj = (0). Therefore f is isomorphism.

11.8 Note : The direct sum R = ⊕
n∑
i=1

Ai is also called the (internal) direct

sum of ideals A1, A2, . . . , An in R and the direct product A1×A2× . . .×An
is called the (external) direct sum of the family of ideals A1, A2, . . . , An.

11.9 Definition : A right (left) ideal I in a range R is called minimal if

(i) I 6= (0) and

(ii) If J is a non-zero right (left) ideal of R contained in I then J = I.

11.10 Example : If R is a divison ring then R itself is a minimal right

ideal as well as minimal left ideal.

11.11 Example : For any two ideals A and B in a ring R then

(i) A+B
B
' A

A∩B

(ii) A+B
A∩B '

A+B
A
× A+B

B
' B

A∩B ×
A

A∩B

Sol. (i) Let A and B be two ideals in a ring R then

A+B = {ai + bi : ai ∈ A, bi ∈ B} and A+B is an ideal in R.

Let x = a1 + b1 and y = a2 + b2 be any two elements of A+B then
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x− y = (a1 + b1)− (a2 + b2) = a1 + (b1 − a2)− b2
= (a1−a2)+(b1− b2) ∈ A+B ( ∵ A,B are ideals)

Also rx = r(a1 + b1) = ra1 + rb1 ∈ A+B, for any r ∈ R

Similarly xr = (a1 + b1)r ∈ A+B.

Therefore A+B is an ideal in R and also A ∩B is an ideal in R.

Since B is an ideal of R such that B ⊆ A+B ⇒ B is an ideal of A+B

⇒ A+B
B

is a Quotient ring.

Define f : A → A+B
B

by f(a) = a + B ∀ a ∈ A then f is a onto homomor-

phism

f is homomorphism : f(a1 + a2) = (a1 + a2) +B = (a1 +B) + (a2 +B) =

f(a1) + f(a2) and f(a1a2) = a1a2 +B = (a1 +B)(a2 +B) = f(a1)f(a2).

f is onto: Let x+B ∈ A+B
B

, where x = a1 + b1 ∈ A+B

consider f(a1) = a1 +B = a1 + b1 +B = x+B (since b1 +B = B).

Therefore f is onto.

Now ker f = {a ∈ A; f(a) = 0̄} = {a ∈ A; a+B = B}

= {a ∈ A; a ∈ B} = A ∩B.

Then by first Isomorphism theorem we get A
A∩B '

A+B
B

.

(ii) To prove that A+B
A∩B '

A+B
A
× A+B

B
' B

A∩B ×
A

A∩B

Let g : A + B → A+B
A
× A+B

B
defined by g(x) = (x + A, x + B), where

x ∈ A+B.

g is homomorphism: For any x, y ∈ A+B, we have

g(x+ y) = (x+ y + A, x+ y +B) = (x+ A+ y + A, x+B + y +B)

= (x+ A, x+B) + (y + A, y +B) = g(x) + g(y)

g(xy) = (xy + A, xy +B) = ((x+ A)(y + A), (x+B)(y +B))

= (x+ A, x+B)(y + A, y +B) = g(x)g(y)
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Therefore g is homomorphism.

g is onto: Let (x+A, y +B) ∈ A+B
A
× A+B

B
, where x, y ∈ A+B such that

x = a1 + b1, y = a2 + b2, a1, a2 ∈ A and b1, b2 ∈ B.

Therefore (x+ A, y +B) = (a1 + b1 + A, a2 + b2 +B) = (b1 + A, a2 +B)

Now a2 + b1 ∈ A+B be such that g(a2 + b1) = (a2 + b1 +A, a2 + b1 +B) =

(b1 + A, a2 +B) = (x+ A, y +B).

For any (x+A, y +B) ∈ A+B
A
× A+B

B
there exists a2 + b1 ∈ A+B such that

g(a2 + b1) = (x+ A, y +B). Therefore g is onto.

Now ker g = {x ∈ A+B/g(x) = (A,B)}

= {x ∈ A+B/(x+ A, x+B) = (A,B)}

= {x ∈ A+B/x+ A = A and x+B = B}

= {x ∈ A+B/x ∈ A and x ∈ B} = A ∩B

Hence g is homomorphism from A+B onto A+B
A
× A+B

B
with kernel A ∩B,

then by first isomorphism theorem we get

A+B

A ∩B
' A+B

A
× A+B

B
(18.11.1)

From (i), we have A+B
B
' B

A∩B and A+B
B
' A

A∩B then the equation (18.11.1)

becomes
A+B

A ∩B
' B

A ∩B
× A

A ∩B

If R = A+B then we have

R

A ∩B
' R

A
× R

B
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11.12 Summary

In this lesson we defined external direct product and also established

equivalent conditions which determines the external direct product.

11.13 Glossary

Direct sum, External direct product.
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LESSON-12

MAXIMAL,PRIME AND NILPOTENT

IDEALS

12.1 Introduction : In this lesson we study and characterise maxi-

mal,prime ideals and simple rings.Further we introduced the notions of nilpo-

tent and nil ideals. Moreover using Zorn’s lemma, we prove an existence

theorem for maximal ideal.

12.2 Co-maximal Ideal

12.2.1 Definition : Two ideals A, B in any ring R are called co-maximal

if A+B = R.

12.2.2 Example : If A = (pe11 ) and B = (pe22 ) are ideals in Z generated

by pe11 and pe22 respectively, where p1, p2 are distinct primes and e1, e2 are

positive integers then A+B = Z. Hence A, B are co-maximal ideals in Z.

12.3 Maximal Ideal

12.3.1 Definition : An ideal A in a ring R is called maximal ideal if (i)

A 6= R and (ii) For any ideal B ⊇ A either B = A or B = R

i.e., An ideal A in a ring R is called a maximal ideal if A 6= R and if for any

ideal B in R such that A ⊂ B ⊂ R then either B = A or B = R.

12.3.2 Theorem : An ideal A in a ring R is maximal ideal if and only if

for all ideals X 6⊂ A. the pair X, A is co-maximal.

Proof. Let A be a maximal ideal of R. Let X be any ideal in R.

If X ⊂ A then X + A = A and the pair X,A is not co-maximal.

Suppose X 6⊂ A then X + A is an ideal in R and A ⊂ X + A ⊂ R.

Since A is maximal ideal we get X + A = A or X + A = R.

Since X 6⊂ A we get X + A = R. Therefore X, A are co-maximal.

Conversely assume that X, A are co-maximal for all X 6⊂ A then X+A = R.

172



Let B be any ideal in R such that A ⊂ B ⊂ R

we have either B = A or B = R.

If B 6= A then B 6⊂ A and B + A = B, since A ⊂ B.

But we have B + A = R as B, A are co-maximal.

Therefore B = R. Hence A is maximal ideal.

12.3.3 Theorem : For any ring R and any ideals A 6= R. The following

are equivalent.

(i) A is maximal.

(ii) The quotient ring R/A has no nontrivial ideals.

(iii) For any element x ∈ R, x /∈ A, A+ (x) = R.

Proof. Suppose A is an ideal in a ring R and A 6= R.

(i)⇒ (ii)

Assume that (i) is true. We know that the ideals of R/A are of the from

B/A, where B is an ideal in R containing A. Thus we have A ⊂ B ⊂ R.

Since A is maximal ideal we have A = B or B = R.

Therefore B/A is either A or R/A.

If B/A is non zero then B 6= A i.e., A ⊆ B and B 6= A ⇒ B = R,

since A is maximal ideal then B/A=R/A.

Hence R/A has only two ideals, they are zero ideal and R/A itself.

(ii)⇒(iii)

Assume that(ii) is true. Let R/A has no non trivial ideals . Let x ∈ R and

x /∈ A then A+ (x) 6= A and A+ (x) is an ideal of R properly containing A.

Therefore, A+ (x)/A is an ideal of R/A and it is non zero ideal in R/A.

⇒ A+ (x)/A = R/A (by (ii))

⇒ A+ (x) = R
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(iii)⇒ (i)

Assume that (iii) is true. We have for any x ∈ R, x /∈ A, A+ (x) = R

Let us assume that A ⊂ B ⊂ R.

If B = A then A is maximal ideal and there is nothing to prove.

If B 6= A, choose an element x ∈ B, x 6∈ A then A+ (x) = R (by(iii)).

Also since A ⊂ B, x ∈ B, where B is an ideal

⇒ A+ (x) ⊂ B

⇒ R ⊆ B and we have B ⊂ R. Hence B = R.

Therefore A is maximal ideal.

12.4 Simple Ring

12.4.1 Definition : A ring R is called a simple ring if the only ideals of

R are the zero ideal and R itself ( i.e., R has no nontrivial ideals.)

12.4.2 Example : (i) Every field is a simple ring.

(ii) A commutative simple ring with unity must be a field.

12.4.3 Theorem : In a non-zero commutative ring with unity then an

ideal M is maximal ideal if and only if R/M is a field.

i.e., Let R be a commutative ring with unity then an ideal M in R is maximal

ideal if and only if R/M is a field.

Proof. Let R be a non-zero commutative ring with unity then for any ideal

M in R we have R/M is a commutative ring with unity,

where R/M = R̄ = {a+M |a ∈ R} = {ā|a ∈ R} and 1̄ = 1 +M .

Let M be maximal ideal then by previous theorem R/M has no non-trivial

ideal ⇒ R/M is simple ring.

Let ā be any nonzero element in R = R/M then aR is a nonzero ideal in R.

Since R has no non-trivial ideals we get aR = R. (aR is an ideal of R and
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āR is an ideal of R)

Now 1̄ ∈ R = aR there exists b̄ ∈ R such that ab = 1

Since R is commutative we have ba = 1̄ = ab

Thus every nonzero element of R is invertible in R. Hence R is a field.

Conversely assume that R is a field then R is a simple ring.

To prove that M is maximal ideal.

Let K be any ideal in R such that M ⊂ K ⊂ R.

If K = M then there is nothing to prove.

If K 6= M then K/M is an ideal in R = R/M .

But R has only trivial ideal and K/M is non zero ideal of R/M .

Therefore K/M = R/M ⇒ K = R ⇒ M is maximal ideal in R.

12.4.4 Example : An ideal M in the ring if integer Z is a maximal ideal

if and only if M = (p), where p is some prime number.

Sol. We know that Z is Principal ideal ring then every ideal M in Z is

of the form (n), for any integer n. Further (n) = (−n). Therefore, we may

assume that n is non negative integer.

Suppose M = (n) is a maximal ideal in Z then Z/(n) is a field.

To prove that n is prime number.

Assume that n is a composite number.

Let n = n1n2, where n1 > 1, n2 > 1 and n1 < n, n2 < n then

n̄ = n1n2 = n1 n2 = 0̄ (since n̄ = 0̄ is zero in Z/(n))

⇒ n1, n2 are zero divisors in Z/(n), where n1 6= 0 , n2 6= 0

which is a contradiction to Z/(n) is a field. Therefore n is a prime number

Conversely assume that M = (p) is an ideal in Z, where p is prime number,

then Z/(p) = Zp = {0̄, 1̄, 2̄, . . . , p− 1} is a commutative ring with unity.
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Let ā ∈ Z/(p) and ā 6= 0̄ then a is not multiple of p ⇒ p does not divides

a i.e., (p, a) = 1 and there exist x, y ∈ Z such that ax+ py = 1

⇒ ax+ py = 1̄

⇒ āx̄+ p̄ȳ = 1̄

⇒ āx̄ = 1̄ (since p̄ = 0̄)

⇒ ā is invertible in Z/(p). Thus every non zero element in Z/(p) is invertible.

Hence Z/(p) is a field. Thereofere M = (p) is a maximal ideal.

12.4.5 Example : If R is the ring of 2× 2 matrices over a field F of the

form

 a b

0 0

, where a, b ∈ F then the set M =

{ 0 b

0 0

∣∣∣∣∣b ∈ F
}

is

a maximal ideal in R.

Sol. R =

{ a b

0 0

∣∣∣∣∣a, b ∈ F
}

=

 F F

0 0

 is a ring, where F is a field.

Let M =

{ 0 b

0 0

∣∣∣∣∣b ∈ F
}

=

 0 F

0 0

 is an ideal of R.

Let S =

{ a 0

0 0

∣∣∣∣∣a ∈ F
}

=

 F 0

0 0

 then S is a subring of R.

Let f : S → F defined by f

( a 0

0 0

) = a then f is homomorphism,

one-one and onto ⇒ S w F . Since F is a field then S is also field.

Further g : R → S defined by g

( a b

0 0

) =

 a 0

0 0

 then g is onto

homomorphic. Now

ker g =

{ a b

0 0

 ∈ R∣∣∣∣∣g
( a b

0 0

) =

 0 0

0 0

}
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=

{ a b

0 0

∣∣∣∣∣
 a 0

0 0

 =

 0 0

0 0

}

=

{ a b

0 0

∣∣∣∣∣a = 0

}

=

{ 0 b

0 0

∣∣∣∣∣b ∈ F
}

= M .

Then by the fundamental theorem of homomorphism we get R/M w S. Since

S is a field then R/M is field. Hence M is a maximal ideal in R.

12.5 Product of Ideals

12.5.1 Definition : Let A and B be right (left) ideals in a ring R then

the set { ∑
finite sum

aibi
∣∣ ai ∈ A, bi ∈ B}

which is a right (left) ideal in R is called the product of A and B and written

as AB.

12.5.2 Note : (i) If A and B are right ideals in R. then their product

AB is a right ideal in R.

(ii) If A and B are ideals in R then A ∩B is also an ideal in R.

12.5.3 Theorem : LetA,B and C be right (left) ideals in a ring R then

(i) (AB)C = A(BC)

(ii) A(B + C) = AB + AC and (B + C)A = BA+ CA.

Proof.(i) Follows from the associativity of multiplication in R.

(ii) Clearly AB,AC ⊂ A(B + C).

Also if a ∈ A, b ∈ B, c ∈ C then a(b+ c) = ab+ ac ∈ AB + AC

Hence AB + AC = A(B + C).

177



12.5.4 Definition : If A1, A2, . . . , An are right ( left) ideals in a ring R

then their product is denoted by A1A2 . . . An and defined as

A1A2 . . . An =

{ ∑
finite sum

a1a2 . . . an

∣∣∣∣ai ∈ Ai, i = 1, 2, . . . n

}
12.5.5 Definition : If A1 = A2 = . . . = An then their product is An.

12.5.6 Note : (i) If p is prime number and p/ab then p/a or p/b.

(ii) If ab ∈ (p) then a ∈ (p) or b ∈ (P ).

Equivalently if (a)(b) ⊆ (ab) ⊂ (p) then (a) ⊂ (p) or (b) ⊂ (p).

12.6 Prime Ideal

12.6.1 Definition : An ideal P in a ring R is called a prime ideal if P 6= R

and has the following property.

If A and B are ideals in R such that AB ⊆ P then either A ⊆ P or B ⊆ P .

12.6.2 Theorem : If R is a ring with unity then each maximal ideal is

prime ideal.

Proof. Let M be any maximal ideal in R.

Let A, B are two ideals in R such that AB ⊆M .

If A ⊆M then M is a prime ideal.

Suppose A 6⊂M then ∃ an element a ∈ A and a /∈M ⇒ M + (a) = R.

But a ∈ A ⇒ (a) ⊆ A (∵ A is an ideal )

⇒ M + (a) ⊆M + A

⇒ R ⊆M + A, but M + A ⊆ R always. Therefore M + A = R

Since 1 ∈ R ⇒ 1 ∈M + A ⇒ 1 = m+ a, for some a ∈ A, m ∈M

(since A 6⊂M then A, M are co maximal ideals and A+M = R )

Let b ∈ B then b = mb+ ab ∈M (since m ∈M and M is ideal ⇒ mb ∈M

and ab ∈ AB ⊆M ⇒ ab ∈M ⇒ mb+ ab ∈M)
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⇒ b ∈M .

⇒ B ⊆M . Hence M is a prime ideal in R.

12.6.3 Note : The converse of the above theorem is not true in general.

12.6.4 Example : The ideal (0) in the ring of integers Z is prime ideal

but not maximal ideal.

Sol. Let a, b ∈ Z and ab ∈ (0) ⇒ ab = 0 ⇒ a = 0 or b = 0

⇒ (a) = (0) or (b) = (0) ⇒ (0) is a prime ideal but not maximal ideal,

since (0) ⊂ (x) ⊂ Z for any x ∈ Z where x 6= 0.

For example (0) ⊂ (2) ⊂ Z.

12.6.5 Theorem : If R is a commutative ring then prove that an ideal P

in R is prime ideal iff ab ∈ P , a ∈ R, b ∈ R ⇒ a ∈ P or b ∈ P .

Proof. We have R is a commutative ring and P is an ideal in R, P 6= R.

Suppose P is a prime ideal in R ( i.e., P 6= R) and if A,B are ideals in R

such that AB ⊆ P then A ⊆ P or B ⊆ P . Let ab ∈ P, where a, b ∈ R.

Since R is a commutative ring, we have (a) = {na+ ar/n ∈ Z, r ∈ R}

(b) = {mb+ bs/m ∈ Z, s ∈ R}

Now (a)(b) =
{ ∑
finitesum

xy
∣∣x ∈ (a), y ∈ (b)

}
The element xy = (na+ ar)(mb+ bs)

= nmab+ nabs+mabr + abrs

Since P is prime ideal and ab ∈ P and r, s ∈ R

⇒ xy ∈ P (The finite sum of such element also belongs to P )

(a)(b) ⊆ P ⇒ (a) ⊆ P or (b) ⊆ P ( P is prime ideal)

⇒ a ∈ P or b ∈ P (since ab ∈ P and P is an ideal R we get

(na+ ar)(mb+ bs) or finite sum of such products are in P )

Conversely assume that ab ∈ P , a, b ∈ R ⇒ a ∈ P or b ∈ P
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Let A and B be ideals in R such that AB ⊆ P .

If A ⊆ P then P is prime ideal.

Suppose A 6⊂ P , there exists an element a ∈ A such that a /∈ P then for each

b ∈ B, we have ab ∈ AB ⊆ P⇒ ab ∈ P ∀ b ∈ B

But by our hypothesis b ∈ P (since a /∈ P )

⇒ B ⊆ P (ab ∈ P ⇒ a ∈ p or b ∈ P )

Thus AB ⊆ P ⇒ A ⊆ P or B ⊆ P .

Hence P is a prime ideal.

12.6.6 Example : In an integral domain R prove that the ideal {0} is

prime ideal.

Sol. Let R be an integral domain

If ab ∈ (0), a, b ∈ R then ab = 0⇒ a = 0 or b = 0 ( R has no zero divisors)

⇒ a ∈ (0) or b ∈ (0). Hence (0) is a prime ideal in R.

12.6.7 Example : A commutative ring R is an integral domain iff (0) is

a prime ideal.

Sol. Let R be a commutative ring.

If R is an integral domain then (0) is a prime ideal.

Suppose (0) is a prime ideal.

Thus if ab ∈ (0), a, b ∈ R then either a ∈ (0) or b ∈ (0)

∴ ab = 0 ⇒ a = 0 or b = 0

⇒ R has no zero divisors. Hence R is an integral domain.

12.6.8 Example : For each prime integer p prove that the ideal (p) in the

ring of integers Z is prime ideal.

Sol. For a, b ∈ Z, Let ab ∈ (p) then p/ab ⇒ p/a or p/b

⇒ a ∈ (p) or b ∈ (p). Hence (p) is a prime ideal.
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12.6.9 Theorem : Let R be a commutative principle ideal domain with

unity then prove that any non zero ideal P 6= R is prime ideal iff P is a

maximal ideal.

Proof. Let R be commutative principal ideal domain with unity.

Let P 6= R be any nonzero prime ideal in R and ab ∈ P ⇒ a ∈ P or b ∈ P .

Suppose P is not maximal ideal then there exists an ideal M in R such that

P ⊂M ⊂ R ⇒ P 6= M and M 6= R. Since R is a principal ideal domain we

have M = bR for some b ∈ R and P = aR, a ∈ R.

Thus aR ⊂ bR and aR 6= bR

This implies a ∈ P and a = bx for some x ∈ R and b /∈ P = aR.

Since P is a prime ideal, a = bx ∈ P , b /∈ P ⇒ x ∈ P

Then x = ay for some y ∈ R

Now a = bx = bay ⇒ a(1− by) = 0

Since a 6= 0 and R is principal ideal domain we get 1− by = 0

⇒ 1 = by ∈M = bR

⇒ 1 ∈M

⇒ M = R which is a contradiction. Hence P is a maximal ideal.

OR

Let R be a commutative principal ideal domain with unity.

Let P 6= R be any nonzero prime ideal of R then P = (a) for some a ∈ R

⇒ P = aR (P = (a) = {ar/r ∈ R} = aR)

If possible, let P be not maximal ideal then there exists an ideal M such

that P ⊆M ⊆ R ⇒ M 6= P and M 6= R

Since M is a principal ideal then M = aR, for some b ∈ R, where bR 6= aR

and bR 6= R.
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P ⊂M ⇒ aR ⊂ bR

⇒ a ∈ bR

⇒ a = bx, for some x ∈ R

Also bR * aR (If bR ⊆ aR and aR ⊆ bR ⇒ aR = bR)

⇒ b /∈ aR.

But aR = P is a prime ideal and

a ∈ P ⇒ bx ∈ P

⇒ x ∈ P (b /∈ aP = P )

⇒ x = ay, for some y ∈ R (P = aR)

⇒ x = bay = aby

⇒ a(1− by) = 0

⇒ 1− by = 0 (a 6= 0)

⇒ by = 1 (R is integral domain)

⇒ 1 ∈M

⇒ M = R which is a contradiction to M 6= R

⇒ P is a maximal ideal.

Conversely let P be a maximal then P is prime ideal (by previous theorem).

12.6.10 Example : Let R be a commutative ring with unity in which each

ideal is prime ideal then prove that R is a field.

Proof. Suppose R is a commutative ring with unity in which each ideal is a

prime ideal. In particular (0) is a prime ideal in R.

Let a, b ∈ R and ab = 0 ⇒ ab ∈ (0) ⇒ a ∈ (0) or b ∈ (0)

∴ R has nonzero divisors and so R is an integral domain.

Let a ∈ R and a 6= 0 then

(a)(a) =
{ ∑
finitesum

r1a.r2a
/
r1, r2 ∈ R

}
=
{
r2a2

/
r ∈ R

}
= (a2)
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But (a2) is a prime ideal, therefore (a) ⊆ (a2). It is easy to see that (a2) ⊆ (a)

Thus we get (a) = (a2) ⇒ a ∈ (a2)

⇒ a = a2x, for some x ∈ R

⇒ a(1− ax) = 0

⇒ 1− ax = 0 (since a 6= 0, R is an integral domain)

⇒ ax = 1

⇒ a has an inverse in R.

Thus every non zero element of R is invertible in R, Hence R is a field

12.6.11 Example : Let R be a Boolean ring then prove that each prime

ideal P 6= R is maximal ideal.

Proof. Suppose R is a Boolean ring then x2 = x ∀ x ∈ R and R is com-

mutative ring. Let P 6= R be a prime ideal in R

Consider the quotient ring R/P then R/P is also commutative.

We first show that R/P is an integral domain.

Let a, b ∈ R. Since P is prime ideal we have ab ∈ P ⇒ a ∈ P or b ∈ P .

Thus if ab = 0̄ then āb̄ = 0 ⇒ ā = 0̄ or b̄ = 0̄

(since a ∈ P or b ∈ P ⇒ a+ P = P or b+ P = P ⇒ ā = 0̄ or b̄ = 0̄)

where x̄ = x+ P ∈ R/P and 0̄ = 0 + P = P .

Therefore R/P has no zero divisors. Hence R/P is an integral domain.

For all x ∈ R, we have

(x̄)2 = (x+ P )(x+ P ) = x2 + P = x+ P = x̄ (x2 = x)

∴ R/P is a Boolean ring.

But every integral domain has only idempotent element 0 and possibly 1

∴ R/P ={0̄} or R/P= {0̄, 1̄}

If R/P={0̄} ⇒ R = P which is not true (since P 6= R)

183



∴ R/P={0̄, 1̄} is finite integral domain

⇒ R/P is field. Hence P is maximal ideal.

(OR)

Consider R/P where P is a prime ideal and P 6= R

Then ab ∈ P ⇒ a ∈ P or b ∈ P

i.e., ab+ P = P ⇒ a+ P = P or b+ P = P

⇒ āb̄ = 0 ⇒ ā = 0̄ or b̄ = 0̄

R/P is an integral domain

Also for all x ∈ R we have

(x+ P )2 = (x+ P )(x+ P ) = x2 + P = x+ P ∀ x ∈ R since (x2 = x)

∴ (x+ P )2 = (x+ P ) for all x+ P ∈ R/P

⇒ R/P is a Boolean ring and also an integral domain.

We know that an integral domain has no idempotent element except zero

and possibly unity.

R/P = {0̄} or R/P = {0̄, 1̄}

(In an integral domain x2 = x ⇒ x(1− x) = 0 ⇒ x = 0 or x = 1)

If R/P = {0} ⇒ R = P which is a contradiction to P 6= R

∴ R/P = {0̄, 1̄} is finite integral domain

∴ R/P is field ⇒ P is maximal ideal.

12.6.12 Example : Let a be a non nilpotent element in a ring and let

S = {a, a2, a3, . . .}. Suppose P is maximal ideal in the family F of all ideals

in R that are disjoint from S then P is a prime ideal.

(Note that the statement dose not say that P is maximal ideal in R precisely,

it means that there does not exist any ideal X ∈ F such that X ) P ).

Sol. Let AB ⊆ P where A and B are ideals in R.
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If possible let A 6⊂ P and B 6⊂ P then A+ P ⊃ P and B + P ⊃ P .

By maximality of P we have (A+ P ) ∩ S 6= Φ and (B + P ) ∩ S 6= Φ.

Thus there exist positive integers i and j such that ai ∈ A+P and aj ∈ B+P

then aiaj ∈ (A + P )(B + P ) = AB + AP + BP ⊆ P because AB ⊆ P and

P is an ideal in R. Thus P ∩ S 6= Φ is a contradiction.

Hence AB ⊆ P ⇒ either A ⊆ P or B ⊆ P . Therefore P is a prime ideal.

12.6.13 Example : LetR = C[0, 1] be the ring of all real-valued continuous

functions on the closed unit integral. If M is a maximal ideal of R then there

exists a real number γ, 0 ≤ γ ≤ 1 such that M = Mγ = {f ∈ R / f(γ) = 0}

and conversely.

Sol. Let M be a maximal ideal of C[0, 1].

We claim that there exist γ ∈ [0, 1] such that f(γ) = 0 for all f ∈ M . Oth-

erwise for each x ∈ [0, 1] there exist fx ∈ M such that fx(x) 6= 0. Because

fx is continuous there exists an open integral say Ix such that fx(y) 6= 0 for

all y ∈ Ix. Clearly [0, 1] =
⋃

x∈[0,1]
Ix. By the Heine-Borel theorem in analysis

there exists a finite subfamily say Ix1 , Ix2 , . . . Ixn of this family of open inte-

grals Ix, x ∈ [0, 1] such that [0, 1] = Ix1 ∪ Ix2 ∪ . . . ∪ Ixn
Consider f =

n∑
i=1

f 2
xi

and suppose f(z) = 0 for some z ∈ [0, 1].

Now [0, 1] =
n⋃
i=1

Ixi implies that there exists Ixk such that z ∈ Ixk (1 ≤ k ≤ n)

then fxk(z) 6= 0. But f(z) = 0 ⇒
∑

(fxi(z))2 = 0 ⇒ fxk(z) = 0 is a con-

tradiction. Thus f(z) 6= 0 for any z ∈ [0, 1] which is in turn yields that f is

invertible and M = C[0, 1] which is not true.

Conversely, we show that Mγ is a maximal ideal of C[0, 1] for any γ ∈ [0, 1].

It is easy to cheek that Mγ is an ideal. To see that it is maximal ideal, we

note that C[0, 1]/Mγ is a field isomorphic to R.
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Alternatively, we may proceed as follows

Let J be an ideal of C[0, 1] properly containing Mγ.

Let g ∈ J , g 6∈Mγ then g(γ) 6= 0.

Let g(γ) = α, then h = g − α is such that h(γ) = 0

i.e., h ∈ Mγ so α = g − h ∈ J . But α 6= 0 implies that α is invertible.

Consequently J = R which proves the converse.

12.7 Nilpotent Ideal

12.7.1 Definition : A right (left) ideal A in a ring R is called nilpotent

ideal if An = (0), for some positive integer n.

12.7.2 Example : (i) In any ring R the zero ideal A = (0) is nilpotent

ideal

(ii) The ideal A = {0̄, 2̄} is not zero a ideal in a ring R = Z/ < 4 >, but it is

nilpotent ideal.

Since A2 = A.A = {0̄, 2̄}{0̄, 2̄} = {0̄, 0̄, 0̄, 0̄} = (0) ⇒ A2 = (0)

(iii) The ideal A =

 0 Z

0 0

 is a nilpotent ideal in a ring R =

 Z Z

0 Z


of 2× 2 upper triangular matrices. Since A2 = A.A = 02×2 = (0).

12.7.3 Note : (i) Every zero ideal is a nilpotent ideal but converse need

not be true.

ii) Every element in a nilpotent ideal is a nilpotent element but converse

need not be true.

(iii) The set of nilpotent elements in ring R is not necessarly form a nilpotent

ideal (this set may not be an ideal).

(iv) A ring R may have nonzero nilpotent element but it may not posses a

nonzero nilpotent ideal.
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12.7.4 Example : Let R = Fn be the ring of n× n matrices over field F

then R has nonzero nilpotent elements such as eij, i 6= j, 1 ≤ i, j ≤ n.

Sol. Let I be a nilpotent right ideal in R with Ik = (0), where k is some

positive integer then consider the ideal

(RI)(RI) . . . (RI)︸ ︷︷ ︸
k times

= R(IR) . . . (IR)︸ ︷︷ ︸
(k−1) times

I ⊆ RI . . . . . . I︸ ︷︷ ︸
(k−1) times

I = RIk = (0).

Hence RI is a nilpotent ideal in R. But we know that the ring R = Fn

has no nontrivial ideal then RI = (0) or RI = R.

Since R has unity 6= 0 then RI 6= R. Therefore RI = (0) only.

For any a ∈ I we have a = 1a ∈ RI = (0)⇒ a = 0. Hence I = (0)

12.8 Nil Ideal

12.8.1 Definition : A right (left) ideal A in a ring R is called a nil ideal

if each element of A is a nilpotent element.

12.8.2 Note : Every nilpotent right (left) ideal is nil ideal but converse is

not true.

12.8.3 Example : Let R = ⊕
∑
Z/(pi), for i = 1, 2, . . ., be the direct

sum of the rings Z/(pi), where p is prime number then R contains non zero

nilpotent elements such as (0 + (p), p+ (p2), 0 + (p3) . . . . . .)

Let I be the set of all nilpotent elements then I is an ideal in R because R

is commutative, so I is a nil ideal. But I is not nilpotent ideal if Ik = (0)

for some positive integers k > 1 then the element

x = (0 + (p), 0 + (p2), . . . , 0 + (pk), p+ (pk+1), 0 + (pk+2) . . . . . .) is nilpotent.

So x ∈ I. But xk 6= 0 which is a contradiction.

Hence I is not nilpotent ideal.

12.9 Some Basic Definitions
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12.9.1 Definition : ( Partial Order) Let S be a nonempty set. A binary

relation on S denotes by 6 ” is called a partial order on S if the following

conditions are satisfied for all a, b, c ∈ S (i) a ≤ a ∀ a ∈ S (reflexive)

(ii) a ≤ b and b ≤ a ⇒ a = b (antisymmetric)

(iii) a ≤ b and b ≤ c ⇒ a ≤ c (transitive)

12.9.2 Definition : (Poset or Partially Ordered Set) A poset is a

system (S,6) consisting of a nonempty set S and a partial order 6 on S.

12.9.3 Definition : (Chain) A subset C of S is said to be a chain in a

poset (S,6) if for every a, b ∈ C we have either a 6 b or b 6 a.

12.9.4 Definition : (Upper Bound) An element u ∈ S is said to be

an upper bound of C if a ≤ u for every a ∈ C.

12.9.5 Definition : (Maximal Element) An element m ∈ S is said to

be a maximal element of poset (S,≤) if m ≤ a, a ∈ S then m = a.

We now state Zorn’s lemma without proof. 12.9.6 Definition : (Zorn’s

Lemma) If every chain C in a poset (S,≤) has an upper bound in S then

(S,≤) has a maximal element.

12.10 Existence of Maximal Ideal

12.10.1 Theorem : If R is a nonzero ring with unity 1 and I is an ideal

in R such that I 6= R then there exist a maximal ideal M of R such that

I ⊆M .

Proof. Let R be a ring with unity and I 6= R is an ideal in R.

Let S be the set of all ideals X 6= R in R such that I ⊆ X then (S,⊆) is a

partially ordered set under inclusion

(i) A ⊆ A ∀ A ∈ S

(ii) A ⊆ B and B ⊆ A ⇒ A = B
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(iii) A ⊆ B, B ⊆ C ⇒ A ⊆ C

Let C be only chain in S and U =
⋃
x∈C

X then I ⊆ U and U is an upper

bound of C.

To prove that U is an ideal : Let a, b ∈ U then there exists ideals A,B

in C such that a ∈ A and b ∈ B. Since C is chain we have either A ⊆ B or

B ⊆ A i.e., either a, b ∈ A or a, b ∈ B

⇒ a− b ∈ A or a− b ∈ B (since A,B are ideals)

⇒ a− b ∈ U

Further a ∈ U ⇒ a ∈ A, for some A ∈ C

⇒ ar and ra ∈ A, ∀ r ∈ R

⇒ ar and ra ∈ U

∴ U is an ideal in R.

If U = R then 1 ∈ U

⇒ 1 ∈ X, for some X ∈ C

⇒ X = R which is a contradiction to X 6= R. Hence U 6= R.

If I ⊆ X for all X ∈ C ⇒ I ⊆ U ⇒ U ∈ S and also U is an upper bound

for C. This shows that the chain C in a poset (S,⊆) has an upper bound

in S. Since C is arbitrary, we see that every chain in (S,⊆) has an upper

bound in S. Therefore by Zorn’s lemma (21.14) we get (S,⊆) has a maximal

element say M

i.e., M is an ideal in R, I ⊆M and M 6= R.

Let N be an ideal in R such that M ⊂ N ⊂ R, M 6= N .

If N 6= R then N ∈ S (since I ⊆M ⊂ N ⇒ I ⊂ N)

which is a contradiction to the maximality of M . Hence N = R

Therefore M is a maximal ideal in R.
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12.11 Summary

In this lesson maximal ideals and prime ideals were characterised. More-

over we established an existence theorem for maximal ideals

12.12 Glossary

Maximal Ideal, Prime Ideal, Nilpotent Ideal, Nil Ideal, Poset, Chain, Zorn’s

lemma .
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UNIT-IV

LESSON-13

UNIQUE FACTORISATION DOMAINS

13.1 Introduction: In this lesson we define unique factorisation domain.

Further, we prove that every prime element is irreducible element in an In-

tegral domain.

13.2 Divisiblity:

13.2.1 Definition: Let a and b be two nonzero elements in a commutative

integral domain R with unity. We say that b divides a ( or b is a divisor of

a or a is divisible by b or a is multiple of b) if there exists an element c ∈ R

such that a = bc. If b divides a then we write b | a or a ≡0(modb).

13.2.2 Definition: An element u ∈ R is said to be unit in R if u has a

multiplicative inverse in R i.e., an element u is a unit in R if there exists an

element v ∈ R such that uv = 1.

13.2.3 Definition: Two elements a , b in R are said to be an associates if

there exist an unit u ∈ R such that a = bu.

13.2.4 Theorem: Let R be a commutative integral domain with unity then

(i) an element u ∈ R is a unit if and only if u | 1.

(ii) a, b are associates in R if and only if a | b and b | a.

Proof. (i) If u is a unit in R then u is invertble, there exists v ∈ R 3

uv = 1. Therefore u | 1. Conversely if u is a divisor of 1 then there exists

v ∈ R 3 1 = uv and hence u is a unit in R.

(ii) If a, b are associates in R then a = bu for some unit u ∈ R. Thus

b | a. If u is a unit in R there exists v ∈ R 3 uv = 1. Now av = buv = b.1 = b.

Therefore b = av ⇒ a | b. Conversely, suppose a | b and b | a. If a | b
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⇒ b = ax for some x ∈ R. If b | a ⇒ a = by for some y ∈ R. Now

b = ax = byx = bxy ⇒ b(1 − xy) = 0 ⇒ xy = 1, where a 6= 0 and b 6= 0.

Thus x and y are units. Therefore a, b are associates.

13.2.5 Definition: An element b in a commutative integral domain R with

unity is called an improper divisor of an element a in R if b is either a unit

or associate of a.

13.2.6 Theorem: Let R be a commutative integral domain with unity then

(i) b | a if and only if (a) ⊂ (b).

(ii) a and b are associates if and only if (a) = (b).

(iii) u is a unit in R if and only if (u) = R.

Proof. (i) Suppose b | a. Then a = br for some r ∈ R. Now x ∈ (a) ⇒

x = as for some s ∈ R. Now x = as = (br)s = b(rs) ∈ (b). Thus (a) ⊂ (b).

(ii) a and b are associates ⇐⇒ a | b and b | a ⇐⇒ (b) ⊂ (a) and (a) ⊂ (b)

⇐⇒ (a) = (b)

(iii) u is a unit in R ⇐⇒ u is a divisor of 1 ⇐⇒ (1) ⊂ (u) ⇐⇒ R ⊂ (u)

⇐⇒ (u) = R (since (u) ⊂ R).

13.2.7 Definition: A nonzero element a of an integral domain R with unity

is said to be an irreducible element if (i) a is not a unit and (ii) every divisor

of a is improper, i.e., a = bc, b, c ∈ R ⇒ either b is a unit or c is unit (i.e.,

the only divisors of a are units and associates).

13.2.8 Definition: A nonzero element p of an integral domain R with unity

is said to be a prime element if (i) a is not unit and (ii)if p | ab, a, b ∈ R,

then either p | a or p | b.

13.2.9 Theorem: Every prime element is an irreducible element in an in-

tegral domain R with unity.
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Proof. Suppose p is a prime element in R. To prove that p is irreducible

element. Let p = bc for some b, c ∈ R.

p = bc ⇒ p.1 = bc ⇒ p | bc ⇒ p | b or p | c (∴ p is prime element)

If p | b⇒ b = px for some x ∈ R. Now p = bc = pxc⇒ xc = 1⇒ c is a unit.

If p | c ⇒ c = py for some y ∈ R. Now p = bc = bpy ⇒ by = 1 ⇒ b is a unit.

Therefore p is an irreducible element.

13.2.10 Remark: In an integral domain R with unity, every prime element

is an irreducible element. But an irreducible element need not be prime ele-

ment.

13.3 Principal Ideal Domain:

13.3.1 Defintion: A commutative integral domain R with unity is said to

be principal ideal domain (PID) if each ideal in R is of the form (a) = aR,

a ∈ R.

13.3.2 Theorem: Prove that an irreducible element in a commutative prin-

cipal ideal domain (PID) is always a prime element.

Proof. Let R be a PID and let p ∈ R is an irreducible element. Therefore

p is not a unit. Suppose that p | ab, where a, b ∈ R. To show that either

p | a or p | b. Assume that p - a. Consider (p) and (a) are ideals in R then

(p) + (a) is also an ideal in R. Since R is a PID then (p) + (a) is a principal

ideal in R. Therefore (p) + (a) = (c), for some c ∈ R,

p ∈ (p) ⊆ (p) + (a) = (c) ⇒ p ∈ (c).

∴ p = cd for some d ∈ R.

As p is irreducible, we have either c in a unit or d in a unit.

Assume that d is a unit then p = cd ⇒ p, c are associates ⇒ (p) = (c) .

But (p) + (a) = (c) = (p) (∵ A+B = A⇒ B ⊆ A)
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⇒ (a) ⊆ (p)

a ∈ (a) ⊆ (p) ⇒ a = px for some x ∈ R. ⇒ p | a which is a contradiction to

d is unit.

Hence c is a unit. (c) = R.

Now (a) + (p) = (c) ⇒ (a) + (p) = R.

1 ∈ R ⇒ 1 ∈ (a) + (p).

⇒ 1 = au+ pu, for some uv ∈ R.

⇒ b = b(au+ pv) = abu+ pbv.. Therefore abu+ pbv = b.

But p | ab and p | pb. Therefore p | abu + pbv = b ⇒ p | b. Therefore p is an

prime element.

13.4 Unique factorisation domain (UFD)

13.4.1 Definition: A Commutative integral domain R with unity is called

a UFD if

(i) Every nonunit element in R is a finite product of irreducible factors.

(ii) Every irreducible element in R is a prime element.

13.4.2 Theorem: If R is a UFD, then the factorization of any (nonunit)

element in R as a finite product of irreducible factors is unique up to order

and unit factors.

Proof. Let R be a UFD. Let a be a nonunit in R, a 6= 0.

If a is irreducible, then a = bc ⇒ either b or c is a unit.

The theorem is true in case a is irreducible. Suppose a is not irreducible then

a can be written as a finite product of irreducible elements say a = p1p2 . . . pn,

where pj are irreducible elements in R.

Let a = p1p2 . . . pn = q1q2 . . . qn, where pi, qj are irreducible (and also prime)

we prove that m = n and each pi is an associate of some qj. we prove this
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by using induction on m. If m = 1 then a = p1 where p1 is irreducible.

Assume by induction hypothesis that the result is true for m − 1 (factors).

Now p1p2 . . . pm−1pm = q1q2 . . . qn−1qn.

⇒ pm | q1q2 . . . qn (pm is prime).

⇒ pm | qj for some j say pm | qk.

qk = u1pm, qk is irreducible.

⇒ u1 is a unit.

p1p2 . . . pm−1pm= q1q2 . . . qk−1u1pmqk+1 . . . qn.

Then pm
−1a = p1p2 . . . pm−1 = u1q2q3 . . . qk−1qk+1 . . . qn. pm

−1a ∈ R.

Therefore By the induction hypothesis, we get m−1 = n−1 ⇒ m = n and

each pi in a associate of some qj. This complete the proof.

13.4.3 Definition: An element d in an commutative integral domain R with

unity is called a greatest common divisor of a, b ∈ R if

(i) d | a, d | b and

(ii) if for c ∈ R, c | a and c | b then c | d.

It is denoted by (a, b) = d.

13.16 Note: (i) If d is a gcd of a, b then every associate of d is also a gcd.

(ii) If d = (a, b) u ∈ R is a unit, then ud is also gcd.

13.5 PROBLEMS ON UNIQUE FACTORIZATION DOMAINS

13.5.1 Problem: Suppose R is commutative integral domain with unity.

Let a, b, c ∈ R Then Prove the following:

(i) c(a, b), (ca, cb) are associates.

(ii) (a, b) = 1, a | c, b | c ⇒ ab | c.

(iii) (a, b) = 1, b | ac ⇒ b | c.

(iv) (a, b) = 1, (a, c) = 1 ⇒ (a, bc) = 1.
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Sol. (i) Let (a, b) = d, (ca, ab) = e.

d | a, d | b ⇒ cd | ca, cd | cb.

⇒ cd | e.

⇒ e = cdx for some x ∈ R.

e | ca, e | cb⇒ cdx | ca.

⇒ ca = cdxy for some y ∈ R.

⇒ a = dxy.

⇒ dx | a. similarly dx | b.

dx | a, dx | b ⇒ dx | (a, b).

⇒ cdx | c(a, b) = cd.

⇒ e | cd.

e, cd are associates.

(ca, cb), c(a, b) are associates. ∴ we can take (ca, cb) = c(a, b).

(ii) Suppose (a, b) = 1, a | c, b | c.

a | c ⇒ ab | bc.

b | c ⇒ ab | ac.

ab | ac, ab | bc.

∴ ab | (ac, bc) ab | c(a, b)

∴ ab | c. [∵ (a, b) = 1]

(iii) Suppose (a, b) = 1.

b | ac, b | bc

∴ b | (ac, bc) = c(a, b) = c.

∴ b | c.

(iv) Let (a, b) = 1, (a, c) = 1 and (a, bc) = d.

To prove d = 1.
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(a, bc) = d ⇒ d | a, d | bc

⇒ d | ac, b | bc ⇒ d | (ac, bc)

⇒ d | c(a, b) ⇒ d | c (∵ (a, b) = 1)

d | a, d | c ⇒ d | (a, c) = 1 ⇒ d = 1.

∴ (a, bc) = 1

13.5.2 Problem: Show that 2 +
√
−5 is irreducible but not a prime in

Z[
√
−5].

Sol.R = Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z} = {a+ b

√
5i : a, b ∈ Z}

It is clear that R is commutative integral domain with unity.

Define N : R→ Z by N(α) = αᾱ, α ∈ R, where α = a+ i
√

5b, ᾱ = a− i
√

5b.

Now αᾱ = a2 + 5b2

N(a+ i
√

5b) = a2 + 5b2 ∈ Z.

For α, β ∈ R, we have

(i) N(α) ≥ 0, N(α) = 0 ⇐⇒ α = 0.

(ii) N(αβ) = N(α)N(β).

(iii) α is a unit ⇐⇒ N(α) = 1.

Let α = a+ i
√

5b, β = c+ i
√

5d

N(α) = a2 + 5b2 ≥ 0

N(α) = 0 ⇐⇒ a2 + 5b2 = 0

⇐⇒ a = 0, b = 0

⇐⇒ α = 0

N(αβ) = (αβ)(αβ) = (αα)(ββ)

= N(α)N(β)

Suppose α is a unit , then ∃ β ∈ R 3 αβ = 1.

∴ N(αβ) = N(1) = 1
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N(α)N(β) = 1

∴ N(α) | 1, N(α) ≥ 0.

N(α) = 1.

Suppose N(α) = 1 ⇒ αα = 1 ⇒ α = α−1

⇒ α is a unit

∴ α is a unit ⇐⇒ N(α) = 1.

We shall now find units of R.

Let a+ i
√

5b be a unit in R.

Then a2 + 5b2 = 1, a, b ∈ Z.

∴ b = 0 and a2 = 1 or a = ±1, b = 0.

∴ units are ±1.

We now show that 2 +
√
−5 is irreducible in R.

Let 2 +
√
−5 = αβ for some α, β ∈ R.

Let α = a+
√
−5b, β = c+

√
−5d, a, b, c, d ∈ Z.

N(αβ)=N(2 +
√
−5)= 22 + 5.12 = 9.

N(α)N(β) = 9.

N(α) | 9 ⇒ N(α) = 1 or 3 or 9.

Claim: N(α) = 1 or N(α) = 9

i.e. N(α) 6= 3.

Suppose if possible N(α) = 3.

a2 + 5b2 = 3, a, b ∈ Z. ————- (1)

But thus equation has no solution in Z.

∴ N(α) 6= 3

∴ Either N(α) = 1 or N(α) = 9 ⇒ N(β) = 1,

⇒ Either α is a unit or β is a unit.
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∴ 2 +
√
−5 is an irreducible element in R.

3, 3 ∈ R 3× 3 = 9.

(2 +
√
−5)(2−

√
−5) = 9.

∴ 2 +
√
−5 | 3X3, 3 ∈ R. ———–(2)

Claim: 2 +
√
−5 | 3. Suppose if possible, 2 +

√
−5 - 3.

Then ∃ α ∈ R 3 3 = (2 +
√
−5)

∴ N(3) = N(α)N(2 +
√
−5)

9 = N(α)× 9

∴ N(α) = 1 α is a unit .

α = ±1.

3 = ±(2 +
√
−5), which is absurd.

∴ 2 +
√
−5 - 3, even though 2 +

√
−5 = 3× 3, 3 ∈ R.

∴ 2 +
√
−5 is not a prime.

∴ Z[
√
−5] is not a UFD.

13.5.3 Problem: Show that 3 is irreducible but not a prime in Z[
√
−5].

13.5.4 Problem: Find gcd of 10 + 11i, 8 + i in Z[i], where Z[i] = {a+ bi :

a, b ∈ Z} is the ring of Gaussian integers.
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LESSON-14

PRINCIPAL IDEAL DOMAIN AND

EUCLIDEAN DOMAIN

14.1 Introduction : In this lesson we define Euclidean domain and also

prove that every ED is a PID but not conversely

14.2 Theorem: Every commutative PID with unity is a UFD, but not

conversely.

Proof.

Suppose R is a PID, R is commutative and 1 ∈ R.

To prove that R is a UFD, we show that

(i) Every irreducible element in R is a prime.

(This one is already proved)

(ii) Every non-unit in R is a finite product of irreducible elements.

To prove (ii), we establish the following.

? R doesn’t contain any infinite ascending chain of ideals.

Suppose A1 ⊆ A2 ⊆ A3 ⊆ . . . ⊆ An ⊆ . . . is an ascending chain of ideals in

R. ———— (1)

R is a PID.

∴ Each Ai is a principal ideal, say Ai = (ai) for some ai ∈ R.

i.e. (a1) ⊆ (a2) ⊆ (a3) ⊆ . . . (an) ⊆ . . ..

Consider A=
∞⋃
n=1

An =
∞⋃
n=1

(ai).

Claim: A is an ideal.

Let x, y ∈ A, r ∈ R.

x, y ∈ A = ∪An ⇒ x ∈ An1 , y ∈ An2 for some n1, n2.

But we have either An1 ⊆ An2 or An2 ⊆ An1 .

∴ x, y ∈ An1 or An2 .
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x− y, rx ∈ An1 or An2 .

∴ x− y, rx ∈ A

∴ A is an ideal in R.

But then A is a principal ideal. (∵ R is a PID)

Let A = (a) for some a ∈ R.

a ∈ A = ∪An.

⇒ a ∈ Ak for some k.

Now a ∈ Ak
⇒ (a) ⊆ Ak

⇒ A ⊆ Ak.

But Ak ⊆ A..

∴ A = Ak.

∴ Am = A for m ≥ k.

∴ A1 ⊆ A2 . . . ⊆ Ak = A = A . . . . ∴ (1) is a finite ascending chain of ideals.

i.e., There are no infinite ascending chain of ideals in R. This proves ?.

We now prove (ii).

Let a ∈ R, be a nonzero non unit.

If a is irreducible, then we are done.

So suppose a is not irreducible.

Then a = a1b1 for some a1, b1 ∈ R such that neither a1 nor b1 is a unit.

If both a1, b1 are irreducible then a is a product of two irreducible elements.

So suppose a1 is not irreducible, b, is irreducible.

a = a1, b1 ⇒ a ∈ (a1) ⇒ (a) ⊆ (a1).

Then a1 = a2b2 where neither a2 not b2 is a unit

a = a1, b1 = a2b2b1.
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If both a2, b2 are irreducible then a is a product of their irreducible elements.

(a) ( (a1) ( (a2).

If this process continues indefinitely, we get an infinite ascending chain of

ideals in R, which leads to a contradiction to ?.

∴ The process terminates after a finite number of steps, say k steps.

a = a1, b1 . . . ak, where each ag is irreducible this prove (ii).

We now show that there are UFDs which are not such PIDs.

We know that every field F is a UFD.

(we prove “R is a UFD ⇒ R(x) a UFD” later )

Then F [x] is a UFD. F [x, y] = F [x]F [y] is also a UFD.

Take (x), (y) which are ideals in F [x, y].

(x) + (y) is an ideal in F [x, y].

Claim: (x) + (y) is not a principle ideal in F [x, y].

suppose if possible (x) + (y) is a principle ideal in F [x, y] say (x) + (y) =

(f(x, y)), for some f(x, y) ∈ F [x, y].

x ∈ (x) ⊆ F [x, y] ⇒ x = f(x, y)c(x, y)

similarly y = f(x, y) d(x, y) for some c(x, y), d(x, y) ∈ F [x, y].

If f(x, y) is a unit then (x) + (y) = F [x, y] which is not true.

Also f(x, y) 6= 0.

∴ deg f(x, y) ≥ 1.

x = f(x, y)c(x, y).

⇒ c(x, y) =const polynomial=c(say)

degf(x, y) = 1.

Similarly d(x, y) = d (a const p)

∴ x = cf(x, y), y = df(x, y).
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cy = dx.

But this is a contradiction to the fact that x, y are two distinct variables.

∴ (x) + (y) is an ideal in F [x, y] which is not a principal ideal.

∴ F [x, y] is not a PID even though it is a UFD.

14.3 Euclidean Domain

14.3.1 Definition: Suppose R is a commutative integral domain with unity.

If there is a function φ : R→ Z satisfying

(i) a, b ∈ R− (0), a | b ⇒ φ(a) ≤ φ(b).

(ii) For a, b ∈ R, b 6= 0 ∃ q, r ∈ R 3 a = qb + r, where either r = 0 or

φ(r) < φ(b).

Then R is called a Euclidean domain.

14.3.2 Theorem: Every Euclidean is a PID.

Proof. Suppose R is a ED with φ : R− (0)→ Z.

To prove that R is PID.

Let A be an ideal in R.

If A = (0), then there is nothing to prove.

So suppose A 6= 0. ∃ a ∈ A 3 a 6= 0.

Consider S = {φ(a) : a ∈ R, a 6= 0} ⊆ Z.

1 | a ∀ a 6= 0.

∴ φ(1) ≤ φ(a).

φ(1) ∈ S.

i.e. S(⊆ Z), which is bounded below.

∴ By the Well ordering principle, there is a least element in S, say φ(d).

Then α ∈ A, d 6= 0, and φ(d) ≤ φ(a) forall a 6= 0 ∈ A.

Claim: A = (d)
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d ∈ A ⇒ (d) ⊆ A —————- (1)

Let x ∈ A

∴ x ∈ R, d ∈ R, d 6= 0

∴ ∃ q, r ∈ R 3

x = qd+ r, r = 0 or φ(r) < φ(d).

Suppose if possible r 6= 0. Then φ(r) < φ(d).

x ∈ A, d ∈ A, A ideal ⇒ x, qd ∈ A.

⇒ x− qd ∈ A.

⇒ r ∈ A.

∴ r 6= 0, r ∈ A, φ(r) < φ(d).

φ(r) ∈ S and φ(r) < φ(d).

But this is a contradiction to the nature of φ(d).

∴ r = 0.

x = qd ∈ (d)

∴ x ∈ (d)

∴ A ⊆ (d) ———— (2)

(1) and (2) ⇒ A = (d), a principal ideal.

∴ R is a PID.

14.3.3 Note: Every ED is a UFD.

ED ⇒ PID ⇒ UFD.

14.3.4 Example. Z is a ED (and hence Z is a UFD)

Define φ(a) = |a| ∀ a ∈ Z.

Let a, b ∈ Z, a 6= 0, b 6= 0 and a | b.

Then b = ac for some c ∈ Z

|b| = |ac| = |a||c|
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∴ |a| ≤ |b|

By the division algorithm in Z, we get for a, b ∈ Z, b 6= Z ∃ unique

q, r ∈ Z 3

a = qb+ r, r = 0 or 0 < r < |b|.

a = qb+ r, φ(r) < φ(b).

∴ Z is a ED.

14.3.5 Example. Z[i], the ring of Gaussian integers is a ED.

Define φ : Z[i]→ Z by

φ(a+ ib) = a2 + b2 = (a+ ib)(a− ib) ∀ a+ ib ∈ Z[i]

For each α ∈ Z[i], φ(α) = αα = |α|2.

Then

(i) φ(α) ≥ 0, φ(α) = 0 ⇐⇒ α = 0.

(ii) φ(αβ) = φ(α)φ(β)

(iii) α is a unit ⇐⇒ φ(α) = 1.

Sol.

(i) φ(α) = |α|2 ≥ 0, φ(α) = 0 ⇐⇒ |α| = 0 ⇐⇒ α = 0.

(ii) φ(αβ) = |αβ|2=|α|2|β|2 = φ(α)φ(β).

(iii) Suppose α is a unit.

∃ β ∈ Z[i] 3 αβ = 1

i.e. φ(αβ) = φ(1) = 1

φ(α)φ(β) = 1.

⇒ φ(α) | 1.

⇒ φ(α) = 1.

Suppose φ(α) = 1.

⇒ |α|2 = 1. ⇒ αα = 1.
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α = α−1 ∈ Z[i].

∴ α is a unit.

Let a+ ib be a unit in Z[i].

Then a2 + b2 = 1, a, b ∈ Z.

∴ (a = ±1 and b = 0) ⇒ ±1

or

(a = 0, b = ±1) ⇒ ±i

∴ ±1,±i are the units in Z[i].

Let α | β.

⇒ β = αr, for some r ∈ Z[i].

⇒ φ(β) = φ(α)φ(r).

⇒ φ(α) | φ(β).

⇒ φ(α) ≤ φ(β).

Let α, β ∈ Z[i], β 6= 0.

Consider α | β, which may or may not lie in Z[i].

Write α | β = a+ ib, a, b ∈ R.

α = (a+ ib)β.

Consider integers m,n such that

|a−m| ≤ 1
2
, |b− n| ≤ 1

2
.

We are sure to get such integers m,n.

Take γ = m+ in ∈ Z[i].

Then α = (a+ ib)β

=((a−m) + i(b− n))β + γβ.

Write δ = ((a−m) + i(b− n))β.

Then α = γβ + δ, where α, β, γ ∈ Z[i].
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⇒ γβ ∈ Z[i].

⇒ α− γβ ∈ Z[i].

⇒ δ ∈ Z[i].

Thus ∃ γ, δ ∈ Z[i] 3 α = γβ + δ.

φ(δ) = |δ|2 = |(a−m) + i(b− n)β|2.

=|(a−m) + i(b− n)|2|β|2

≤ (1
4

+ 1
4
)|β|2.

=1
2
|β|2 < |β|2

= φ(β)

φ(δ) < φ(β).

∴ Z[i] is a Euclidean domain.

∴ Z[i] is a PID and hence a UFD.

14.3.6 Problems. Suppose R is a ED with φ : R→ Z. Prove the following

(i) b 6= 0 ⇒ φ(0) < φ(b).

(ii) a, b are associates ⇒ φ(a) = φ(b).

(iii) a | b and φ(a) = φ(b) ⇒ a, b are associates.

Sol. (i) b 6= 0.

⇒ a, b ∈ R, b 6= 0.

⇒ 0 = 0.b+ 0.

∴ φ(0) < φ(b).

(ii) Suppose a, b are associates.

⇒ a | b and b | a.

⇒ φ(a) ≤ φ(b) ≤ φ(a).

⇒ φ(a) = φ(b).

(iii) Suppose a | b and φ(a) = φ(b).
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Then to prove that b | a.

∃ q, r ∈ R 3 a = bq + r, where φ(r) < φ(b).

Suppose if possible r 6= 0.

a | b.

⇒ b = ax for some x ∈ R.

a = q(ax) + r.

⇒ r = a(1− qx).

⇒ a | r.

⇒ φ(a) ≤ φ(r) ≤ φ(b).

i.e. φ(a) < φ(b) = φ(a).

∴ φ(a) < φ(a), absurd.

∴ r = 0.

a = qb or b | a.

Thus a | b and b | a.

⇒ a, b are associates.

14.4 Summary

In this lesson we have established that every ED ia a PID. Also Z[i], the

ring of Gaussian integers is a ED and hence a PID and UFD

14.5 Glossary

Euclidean domain, The ring of Gaussian integers.
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LESSON-15

POLYNOMIAL RINGS OVER UNIQUE

FACTORIZATION DOMAIN

15.1 Introduction : In this lesson we study Polynomial rings over a com-

mutative integral domain. Also we prove that a polynomial ring over a UFD

is also a PID

15.2 Polynomial Ring

15.2.1 Definition: SupposeR is a commutative ring. ThenR[x] = {(a0, a1, a2, . . .) :

ai ∈ R}, the set of all finite sequences of members in R. (a0, a1, a2, . . .) is a

finite sequence we mean ai = 0 ∀ i > k for some k.

For (a0, a1, a2, . . .), (b0, b1, b2, . . .) ∈ R[x], define

(a0, a1, a2, . . .) + (b0, b1, b2, . . .) = (a0 + b0, a1 + b1 + a2 + b2, . . .)

(a0, a1, a2, . . .).(b0, b1, b2, . . .) = (c0, c1, c2, . . .), where

c0 = a0b0, c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0
...

cr = a0br + a1br−1 + a2br−2 + . . .+ arb0
...

Then R[x] is a ring under these operations, called the polynomial ring over

R in the variable x.

Suppose (a0, a1, a2, . . .) ∈ R[x]. Then ∃ k 3 (a0, a1, a2, . . . , ak−1, ak, 0, 0, 0, . . .),

ak 6= 0

we denote the element by a0+a1x+a2x
2+ . . .+akx

k and this is a polynomial

in x.

(a0, a1, a2, . . . , ak, 0, 0, 0, . . .)→ a0 + a1x+ a2x
2 + . . .+ akx

k
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write f(x) = a0 + a1x+ a2x
2 + . . .+ akx

k, ak 6= 0, k > 0.

ak is called the leading coefficient of f(x) and k is called the degree of

the polynomial f(x). If ai = 0 ∀ i, we call f(x), the zero polynomial for which

we does not assign any degree.

In case f(x) = a0, a0 6= 0, f(x) is called a constant polynomial and

degree of f(x) is taken as zero.

Let f(x) = a0 + a1x+ a2x
2 + . . .+ akx

k, (ak 6= 0)

f(x) = b0 + b1x+ b2x
2 + . . .+ bkx

l, (bl 6= 0)

Then

f(x).g(x) = a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + . . .+ akblx

k+l.

Suppose R[x] = {f(x) : f(x)is a polynomial with coefficients inR}. Let

f(x) ∈ R[x], where R is a UFD, with f(x) = a0 + a1x + a2x
2 + . . . + anx

n,

(an 6= 0)

If an is a unit, then f(x) is called a monic polynomial.

If gcd(a0, a1, a2, . . . , an) is a unit, then f(x) is called a primitive polynomial.

gcd(a0, a1, a2, . . . , an) is called the context of f(x) and is denoted by c(f(x))

or c(f)

15.2.2 Note: Every monic polynomial is a primitive polynomial.

15.2.3 Example: Consider Z[x] f(x) = 1 + x + x2 − x3, g(x) = 2 + 4x−

6x2 + x3 are monic polynomials in Z[x].

15.2.4 Example: f(x) = 2 + 6x− 10x2is not a primitive polynomial.

Sol. Since gcd(2, 6,−10) = 2 is not a unit. Hence given f(x) is not a primi-

tive polynomial.

Here c(f(x)) = 2
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f(x) = 2(1 + 3x− 5x2) = 2(f1(x)), where f1(x) = 1 + 3x− 5x2

f1(x)) is primitive.

15.2.5 Note: If f(x) ∈ Z[x], then f(x) = cf1(x), where f1(x) is a primitive

polynomial.

15.2.6 Theorem (Division Algorithm):

Let R = F [x], where F is a commutative integral domain. Let f(x), g(x) 6=

0 ∈ F [x] of degrees m and n respectively. Let k = max{m− n+ 1, 0}. Sup-

pose that a is the leading coefficient of g(x), then there exists polynomials

q(x), r(x) in F [x] uniquely satisfying akf(x) = q(x)g(x) + r(x) where either

r(x) = 0 or deg r(x) < deg g(x).

Proof. Let b be the leading coefficient of f(x).

We prove the theorem by using induction on m (=deg f(x)). Infact to prove

the existence of q(x) and r(x).

If m < n, then take q(x) = 0 and r(x) = f(x), so that

f(x) = 0.g(x) + f(x), deg f(x) = m < n= deg g(x)

where k = max{m− n+ 1, 0} = 0→ akf(x) = f(x).

Suppose m ≥ n.

Suppose by the induction hypothesis q(x), r(x) exists for all polynomials of

degree < m. —————- (1)

Let f1(x) = af(x)− bxm−ng(x) ∈ F [x]. Note that degf1(x) < m.

Then by the induction hypothesis, we get polynomials q1(x), r1(x) in F [x] 3

ak1f1(x) = q1(x)g(x) + r1(x)

where r1(x) = 0 or degr1(x) < deg g(x).

Here k1 = max{m− 1− n+ 1, 0} = max{m− n, 0} = m− n

am−nf1(x) = q1(x)g(x) + r1(x)
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Now am−n
(
af(x)− bxm−ng(x)

)
= q1(x)g(x) + r1(x)

am−n+1f(x)
(
am−nbxm−n + q1(x)

)
g(x) + r1(x)

∴ akf(x) = q(x)g(x) + r(x), where r(x) = r1(x)

q(x) = am−nbxm−n + q1(x) ∈ F [x], deg r(x) < deg g(x).

This proves the existance of q(x) and r(x).

We now prove the uniqueness q(x) and r(x).

Suppose q
′
(x), r

′
(x) are such that

akf(x) = q
′
(x)g(x) + r

′
(x), deg r

′
(x) < deg g(x).

We also have akf(x) = q(x)g(x) + r(x),(
q
′
(x)− q(x)

)
g(x) = r(x)− r′(x) ————- (2)

As deg r(x), deg r
′
(x) < n, unless r(x) = r

′
(x) (2) leads to an absurdity

∴ r(x) = r
′
(x)

As g(x) 6= 0, q(x) = q
′
(x).

This completes the proof.

15.2.7 GAUSS LEMMA

Suppose f(x), g(x) ∈ R[x], whereR is a UFD. Then c
(
f(x)g(x)

)
= c
(
f(x)

)
c
(
g(x)

)
i.e. the product of two primitive polynomials is a primitive polynomial.

Proof.

f(x) = c
(
f(x)

)
f1(x).

pg(x) = c
(
g(x)

)
g1(x), where f1(x), g1(x) are primitive.

f(x)g(x) = c1f1(x)c2g1(x), c1 = c
(
f(x)

)
, c2 = c

(
g(x)

)
.

f(x)g(x) = c1c2f1(x)g1(x).

To prove that c
(
f(x)g(x)

)
= c1c2, it is enough to show that f1(x)g1(x)

is a primitive polynomial.

∴ In order to prove the theorem it is enough to show that the product
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of any two primitive polynomials is a primitive polynomial. We now prove

that f1(x)g1(x) is a primitive polynomial.

Suppose f1(x)g1(x) is not a primitive polynomial. Then there is a prime

(or irreducible) element p in R such that p divides each of the coefficients of

f1(x)g1(x). ————— (1)

Write f1(x) = a0 + a1x+ a2x
2 + . . .+ amxm, am 6= 0.

g1(x) = b0 + b1x+ b2x
2 + . . .+ bmxm, bm 6= 0, ai, bj ∈ R.

Then f1(x)g1(x) = c0 + c1(x) + c2x
2 + . . .+ ctx

t + . . .+ ambnx
m+n.

where c0 = a0b0.

c1 = a0b1 + a1b0.

c2 = a0b2 + a1b1 + a2b0.
...

ct = a0bt + a1bt−1 + . . .+ atb0.
...

We have p | cj ∀ j ——————- (2)

f1(x) is a primitive polynomial.

Let s be the least index 3 p - as.

g1(x) is also primitive.

∴ k 3 p - bk, k least.

i.e
p | a0, p | a1, p | a2, . . . , p | as−1butp - as
p | b0, p | b1, p | b2, . . . , p | bk−1butp - ak

}
—————– (3)

Consider cs+k = a0bs+k + a1bs+k−1 + . . . + as−1bk+1 + asbk + as+1bk−1 +

. . .+as+kb0.
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By (2) and (3), we see that p | asbk. p is prime.

∴ But p - as, p - bk.

This contradicts the primality of p.

∴ f1g1(x) is a primitive polynomial.

15.2.8 Theorem: If R is a UFD, then R[x] is also a UFD.

Proof. As R is a commutative integral domain with unity so is R[x].

We first prove that every non-zero element of R[x] is a finite product of

irreducible elements.—————-(1)

Let f(x)(6= 0) ∈ R[x].

We prove this by using induction on deg f(x).

Let deg f(x) = 0. Then f(x) = a ∈ R, a 6= 0. R is a UFD.

⇒ a = p1p2 . . . ps, a finite product of irreducible elements.

Assume that, by the induction hypothesis, the result (1) is same for all

the polynomials of degree < deg f(x). —————-(2)

In case f(x) is irreducible, then there is nothing to prove.

So suppose f(x) is not irreducible. Then f(x) = f1(x)f2(x) for some f1, f2(x) ∈

R[x], wherein neither f1(x) nor f2(x) is a unit.

Note that deg f1(x) < deg f(x), deg f2(x) < deg f(x),

∴ By the induction hypothesis (2) f1(x) and f2(x) can be written as a finite

product of irreducible elements in R[x] and hence f(x) is also a finite product

of irreducible elements of R[x].

This proves (1)

We now prove that every irreducible element of R[x] is a prime element.

Let p(x) be an irreducible element.

Let p(x) | f(x)g(x), f(x), g(x) ∈ R[x].
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It is enough to prove that either p(x) | f(x) or p(x) | g(x).

Assume that p(x) - f(x)

Suppose deg p(x) = 0. Then p(x) ∈ R, say p(x) = b, b ∈ R. R is a UFD.

c | f(x)g(x)⇒ f(x)g(x) = bh(x) for some h(x).

⇒ c
(
f(x)

)
c
(
g(x)

)
= bc

(
h(x)

)
.

⇒ b | c
(
f(x)

)
c
(
g(x)

)
.

⇒ b | c
(
f(x)

)
or b | c

(
g(x)

)
.

But f(x) = c
(
f(x)

)
f1(x), g(x) = c

(
g(x)

)
g1(x).

∴ b | c
(
f(x)

)
f1(x) or b | c

(
g(x)

)
g1(x).

i.e b | f(x) or b | g(x).

p(x) | f(x) or p(x) | g(x).

∴ p(x) is prime in this case.

So suppose deg p(x) > 0. Consider the ideal generated by p(x) and f(x) i.e〈
p(x), f(x)

〉
in R[x].

Infact

S =
〈
p(x), f(x)

〉
=
{
A(x)p(x) +B(x)p(x) : A(x), B(x) ∈ R[x]

}
.

Let φ(x) be a polynomial of least degree in
〈
p(x), f(x)

〉
.

Let a be the leading coefficient of φ(x). f(x), φ(x) ∈ R[x], φ(x) 6= 0.

∴ By the division algorithm.

akf(x) = q(x)φ(x) + r(x), r(x) = 0 or deg r(x) < deg φ(x),

where r(x), q(x) ∈ R[x].

akf(x) ∈ S, φ(x) ∈ S, q(x) ∈ R[x]. ⇒ q(x)φ(x) ∈ S.

∴ akf(x)− q(x)φ(x) ∈ S, r(x) ∈ S.

If r(x) 6= 0, then this leads to a contradiction to the nature of φ(x).

∴ r(x) = 0.
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∴ akf(x) = q(x)φ(x).

= q(x)c(φ)φ1(x), φ1(x) is primitive.

⇒ φ1(x) | akf(x).

⇒ akf(x) = t(x)φ1(x).

⇒ akc(f) = c(t)c(φ1), By Gauss Lemma.

⇒ akc(f) = c(t) (∵ c(φ1) = 1 as φ1 is prime).

⇒ ak | c(t) (But t(x) = c(t)t1(x)).

⇒ ak | c(t)t1(x) = t(x).

⇒ ak | t(x).

∴ φ1(x) | f(x).

Similarly we can see that φ1(x) | p(x).

But p(x) is irreducible and p(x) - f(x) i.e. p(x), f(x) are relatively prime.

φ1(x) | gcd
(
p(x), f(x)

)
.

∴ φ1(x) is a unit i.e. φ1(x) ∈ R.

But φ(x) = c(φ)φ1(x) ∈ R.

∴ φ(x) = a ∈ S.

∴ ∃ A(x), B(x) ∈ R[x] 3 a = A(x)p(x) +B(x)f(x).

⇒ ag(x) = A(x)p(x)g(x) +B(x)f(x)g(x)

But p(x) | f(x)g(x), p(x) | p(x)g(x).

∴ p(x) | A(x)p(x)g(x) +B(x)f(x)g(x) = ag(x).

∴ p(x) | ag(x).

ag(x) = t(x)p(x) for some t(x) ∈ R[x].

ac(g) = c(t)c(p), by Gauss Lemma.

ac(g) = c(t). (p(x) is irreducible ⇒ c(p) = 1)

∴ a | c(t).
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⇒ a | c(t)t1(x) (∵ t(x) = c(x)t1(x)).

⇒ a | t(x).

Now a | t(x), ag(x) = t(x)p(x).

∴ p(x) | g(x).

15.3 Summary

In this lesson we have established the division algorithm in a polynomial

ring F [x]. Moreover we proved that the product any two primitive polyno-

mials is again primitive.

15.4 Glossary

Polynomial ring, Division algorithm, Primitive polynomial .
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LESSON-16

RINGS OF FRACTIONS

16.1 Introduction : In this lesson we study the rings of fractions.

16.2 Definition: Suppose R is a commutative ring. An element a(6= 0) ∈

R, which is not a zero divisor is called a regular element of R.

16.3 Definition: Let S ⊂ R. If s1, s2 ∈ S ⇒ s1s2 ∈ S. Then S is called a

multiplicative set.

If S is a multiplicative subset of R in which each element is regular

then S is called a regular multiplicative set.

16.4 Note: Suppose R is a commutative integral domain. Then R− (0) is

a regular multiplicative set.

Proof. Let a, b ∈ R− (0).

⇒ a 6= 0, b 6= 0.

⇒ ab 6= 0

⇒ ab ∈ R− (0).

∴ R− (0) is a multiplicative set.

Infact every a ∈ R− (0), a 6= 0 and a is not a zero divisor.

Hence every element of R− (0) is a regular element.

Showing that R− (0) is a regular multiplicative set.

16.5 Theorem: suppose R is a commutative ring and S a multiplicative

subset of R. Then define a relation ∼ on R× S as follows:

For (a, s1), (b, s2) ∈ R× S, define

(a, s1) ∼ (b, s2) ⇒ ∃ s3 ∈ S 3 s3(as2 − bs1) = 0.

Then ∼ is an equivalence relation on R× S.

Proof.

Let (a, s) ∈ R× S. For any s1 ∈ S, we have s1(as− as) = 0
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giving (a, s) ∼ (a, s), proving ∼ is reflexive.

Let (a, s1) ∼ (b, s2).

⇒ ∃s3 ∈ S 3 s3(as2 − bs1) = 0

⇒ s3(bs1 − as2) = 0

⇒ (b, s2) ∼ (a, s1)

showing ∼ is symmetric.

Let (a, s1) ∼ (b, s2), (b, s2) ∼ (c, s3). To prove that (a, s1) ∼ (c, s3). Then

∃ s′ , s′′ ∈ S 3 s′(as2 − bs1) = 0, s
′′
(bs3 − cs2) = 0.

Now s
′′
s3s

′
(as2 − bs1) = 0 and

s
′
s1s

′′
(bs3 − cs2) = 0. Adding these two we get

s
′′
s3s

′
s2a− s

′
s1s

′′
s2c = 0.

s
′
s
′′
s2(as3 − cs1) = 0. (∵ s

′′′
= s

′
s
′′
s2 ∈ S)

s
′′′

(as3 − cs1) = 0.

which implies (a, s1) ∼ (c, s3), proving ∼ is transitive.

Hence ∼ is an equivalence relation.

16.6 Theorem: Denote the equivalent class of (a, s) ∈ R× S by a
s
. Write

RS =
{
a
s

: a ∈ R, s ∈ S
}

.

Define +, . on Rs as follows:

a1
s1

+ a2
s2

= a1s2+a2s1
s1s2

.

a1
s1
.a2
s2

= a1s2.a2s1
s1s2

. (∀ a1
s1
, a2
s2
∈ Rs)

Then Rs is called the ring of fractions of R with respect to S or localisation

of R at S or quotient ring of R with respect to S.

Proof.

Let a
s

be the equivalent class of (a, s)

a
s

= [(a, s)]
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=
{

(b, s
′
) : (b, s

′
) ∼ (a, s)

}
=
{

(b, s
′
) : s

′′
(as

′ − bs) = 0 for some s
′′ ∈ S

}
Clearly

Rs =
{
a
s

: a ∈ R, s ∈ S
}

, a
s

= [(a, s)] is a ring with unity (with zero 0
s

and

unity s
s

for any s ∈ S)

a
s1

+ 0
s

= a1s+0.s1
s1s

= a1s
s1s

= a1
s1(

since a
s

= as1
ss1

⇐⇒ [(a, s)] = [(as1, ss1)], (a, s) ∈ [(a, s)]

⇐⇒ (a, s) ∼ (as1, ss1) because

s
′
(ass1 − as1s) = 0 ∀ s′ ∈ S

Therefore (as1, ss1) ∈ [(a, s)]

(as1, ss1) ∈ [(as1, ss1)]

proving [(a, s)] = [(as1, ss1)]

Which gives a
s

= as1
ss1

)
a1
s1
. s
s

= a1s
s1s

= a1
s1
.

16.7 Theorem: Suppose S is a multiplicative subset of a commutative ring

R. Let Rs be the ring of fractions of R with respect to S. If 0 ∈ S, then

Rs = (0).

Proof.

0 ∈ S; a
s
∈ Rs

a
s

= as1
ss1
∀ s1 ∈ s.

In particular, 0 in the place of s1, gives

a
s

= 0
0

= 0
s′

(s
′
= 0 ∈ S)

∴ Rs = 0 (0
0

= 0 of Rs

0
0

= 1 of Rs )
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0
0

= s
′

s′
, s
′
= 0 ∈ S ⇒ 0

0
is unity.

(0 = 1 ∈ Rs if 0 ∈ S).

16.8 Theorem: Suppose S is a multiplicative subset of R, where R is a

commutative ring. Then there is a natural homomorphism f : R→ Rs given

by f(a) = as
s
∀ a ∈ R and for some fixed s ∈ S. Moreover, f is a monomor-

phism (i.e 1− 1 homeomorphism)

⇐⇒ ”x ∈ S, a ∈ R, xa = 0⇒ a = 0”

Proof.

Clearly f : R→ Rs (∵ as ∈ R, s ∈ S ⇒ as
s
∈ Rs )

Let a1, a2 ∈ R. Then f(a1) + f(a2) = a1s
s

+ a2s
s

= a1ss+a2ss
ss

= a1s2+a2s2

s2
= (a1+a2)s2

s2

= (a1+a2)s
s

f(a1 + a2) = (a1+a2)s
s

f(a1)f(a2) = a1s
s
.a2s
s

= a1a2ss
ss

= a1a2s
s

f(a1a2) = a1a2s
s
.

∴ f is homomorphism.

f is monomorphism ⇐⇒ kerf = (0)

⇐⇒ {a ∈ R : f(a) = 0 of Rs} = (0)

⇐⇒ {a ∈ R : as
s

= 0
s
} = (0)

⇐⇒ {a ∈ R : (as, s) ∼ (0, s)} = (0)

⇐⇒ {a ∈ R : ∃s′ ∈ s 3 s
′
(ass− 0s) = 0} = (0)

⇐⇒ {a ∈ R : ∃s′ ∈ S 3 as2s
′
= 0} = (0)

⇐⇒ {a ∈ R : ax = 0, x ∈ S} = (0)

⇐⇒ ”ax = 0, x ∈ S ⇒ a = 0”
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16.9 Theorem: Suppose R is a commutative ring with some regular el-

ements. Let S be the set of all regular elements of R. Then we have the

following statements.

(i) R can be embedded in Rs.

Treating R to be a subring of Rs, we have

(ii) Every regular element of R is invertible in Rs.

(iii) Every element a
s
∈ Rs can be written as as

′
, a ∈ R, s ∈ S.

Proof.

Claim: S is a multiplicative subset of R.

Let s1, s2 ∈ S. Then s1, s2 are regular elements.

∴ s1, s2 6= 0 (otherwise s1, s2 become zero divisors)

If ∃ s ∈ S 3 (s1s2)s = 0, then s1(s2s) = 0.

But s1 being not a zero divisor, we have s2s = 0

s2 is not also a zero divisor.

∴ s = 0.

∴ s1s2 is not a zero divisor.

∴ s1s2 ∈ S.

∴ S is a multiplicative set.

Let Rs be the ring of fractions of R with respect to S.

We know that f : R→ Rs given by f(a) = as
s

is a homomorphism.

Let x ∈ S, a ∈ R 3 ax = 0.

x ∈ S ⇒ x is a regular element.

⇒ x is not a zero divisor.

∴ a = 0

∴ f is 1− 1 homomorphism. R ↪→ Rs
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∴ R is embedded in RS.

As such we can treat R as a subring of Rs by identifying a ∈ R with as
s
∈ Rs.

a↔ as
s

Let a ∈ S i.e. a is a regular element of R.

Consider b = s
as

(for some s ∈ S)(
∵ a ∈ S ⇒ as ∈ S

s ∈ (S ⊂)R⇒ s
as
∈ Rs

)
.

Then b ∈ Rs.

a.b = a. s
as

= as
s
. s
as

= ass
sas

= s
′

s′
= 1 ∈ Rs.

(s
′
= as2 ∈ S)

b ∈ Rs and a−1 = b

∴ a−1 = s
as

Let a1
s1
∈ RS

a1.s
−1
1 = a1.

s
s1s

= a.s
s
. s
s1s

= a1ss
s1ss

= a1
s1

∴ a1
s1

= a1s
−1
1

16.10 Theorem: Every commutative integral domain can be embedded in

a field.

Proof. Suppose R is a commutate integral domain.

Take S = R− (0), which is the set of all regular elements of R.

∴ R ↪→ Rs, where every regular element of R is invertible in Rs.

Let a1
s1
∈ Rs,

a1
s1
6= 0 of Rs

a1
s1
6= 0

s

s1 ∈ S = R− (0) ⇒ s1 6= 0.

a1
s1

= 0
s
⇒ a1 6= 0 ⇒ a1 ∈ S.

a1 ∈ S, s1 ∈ (S ⊆ R) ⇒ s1
a1
∈ Rs.

Then a1
s1
. s1
a1

= a1s1
s1a1

= s
′

s′
, (s

′
= a1s1 ∈ S)
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= 1 of Rs

∴ (a1
s1

)−1 = s1
a1
.

∴ Rs is a field and R is embedded in Rs.

Rs is called the field of fractions.

16.11 Definition (Local Rings):

Suppose R is a ring with unity. If R has a unique maximal right ideal, then

R is called a Local ring.

16.12 Theorem: Suppose R is a commutative ring, P a prime ideal in R.

Let S = R− p. Then S is a multiplicative subset of R and Rs is a local ring

with the unique manimal ideal ps, where ps = {a
s

: a ∈ p, s ∈ S}

Proof. Let s1, s2 ∈ S. S = R− p

⇒ s1, s2 /∈ p ⇒ s1s2 /∈ p (∵ p is a prime ideal)(
For, if s1s2 ∈ p, p is a prime ideal in R, R commutative.

⇒ s1 ∈ p or s2 ∈ p which is not true.
)

s1s2 /∈ p ⇒ s1s2 ∈ R− p = S ⇒ s1s2 ∈ S.

∴ S is a multiplicative set.

∴ Rs is a commutative ring.

Consider ps = {a
s

: a ∈ p, s ∈ S}.

Let a1
s1
, a2
s2
∈ ps. Then a1

s1
− a2

s2
= a1s2−a2s1

s1s2

p is a (prime) ideal, a1 ∈ p, a2 ∈ p, s1s2 ∈ (S ⊂)R

⇒ a1s2 − a2s1 ∈ p

∴ a1
s1
− a2

s2
∈ ps

Let x
s
∈ Rs,

a1
s1
∈ ps.

x
s
.a1
s1

= xa1
ss1
, where ss1 ∈ S.

x ∈ R, a1 ∈ p, p is an ideal ⇒ xa1 ∈ p.
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∴ xa1
ss1
∈ ps

∴ ps is an ideal in Rs.

We now prove the manimal ideal nature of ps.

Let A be an ideal in Rs 3 ps ⊆ A ⊆ Rs.

Let ps 6= A i.e.ps ( A.

Then ∃ x
s
∈ A 3 x

s
∈ ps. Here x ∈ S, x /∈ p.

x /∈ p ⇒ x ∈ R− p = S ⇒ x ∈ S

s ∈ (S ⊆ R), x ∈ S ⇒ s
x
∈ Rs.

Now s
x
∈ Rs,

x
a
∈ A, A is an ideal.

∴ s
x
.x
s
∈ A i.e xs

xs
∈ A.

A contains the unity of Rs.

∴ A = Rs.

∴ Ps is a maximal ideal in Rs.

To prove that Rs a local ring it remains to be shown that Ps is unique.

Let B be a maximal ideal in Rs and B 6= ps.

Then B 6= Rs.

Then ∃ x
a
∈ ps but x

s
∈ B and

(
∃ y
s1
∈ ps but y

s1
/∈ B

)
Let x

s
∈ B but x

s
∈ ps.

Then B = Rs, which is a contradiction.

∴ Rs is a local ring.

16.12 Summary

In this lesson Every commutative integral domain can be embedded in

a field.

16.13 Glossary

Regular element, Ring of fractions, Local element.
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