Instruction Material

M.Sc(Mathematics)-Semester-I
 Paper-I

Abstract Algebra

Editor

Prof. B. Surender Reddy

Course Writers

(1). Dr. B. Surender Reddy

Professor of Mathematics
Osmania University, Hyderabad

(2). Dr. V. Kiran

Associate Professor
Department of Mathematics
Osmania University, Hyderabad

Syllabus

Paper - I : Abstract Algebra

Unit-I

Automorphisms - Conjugacy and G-sets - Normal series - Solvable groups

- Nilpotent groups. (Pages 104 to 128)

Unit-II

Structure theorems of groups : Direct products - Finitely generated abelian groups
-Invariants of a finite abelian group- Sylow's theorems - Groups of orders
p^{2}, pq. (Pages 138 to 155)

Unit-III

Ideals and homomorphisms - Sum and direct sum of ideals - Maximal and prime ideals
-Nilpotent and nil ideals - Zorn's lemma. (Pages179 to 211)

Unit-IV

Unique factorization domains(UFD) - Principal ideal domains - Euclidean domains -Polynomial rings over UFD- Rings of Fractions. (Pages 212 to 228)

Text Book : Basic Abstract Algebra by P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul.

Reference :

[1] Topics in Algebra by I. N. Herstein.
[2] Elements of Modern Algebra by Gibert and Gilbert.
[3] Abstract Algebra by Jeffrey Bergen.
[4] Basic Abstract Algebra by Robert B Ash.

Contents

1 Normal Subgroups - Isomorphism theorems
2 Automorphisms
3 G-Sets and Class equation
4 Normal Series
5 Nilpotent groups
6 Direct Products
7 Finitely Generated Abelian Groups
8 Cauchy's theorem for Abelian Group and Sylow Theorems
9 Ideal of Rings
10 Homomorphsim of Rings
11 Sum and Direct sum of Ideals
12 Maximal, Prime and Nilpotent Ideals
13 Unique Factorization Domain
14 Principal Ideal domain and Euclidean Domain
15 Polynomial Rings over Unique Factorization Domain
16 Rings and Fractions

UNIT-I

LESSON-01

PRELIMINARIES

NORMAL SUBGROUPS-ISOMORPHISM THEOREMS

1.1 Introduction.

Recall that the symmetric group on three symbols is denoted by S_{3} and is described as follows

$$
S_{3}=\left\{e, a, a^{2}, b, a b, a^{2} b / a^{3}=2=b^{2}, b a=a^{2} b\right\}
$$

Clearly $H=\{e, b\}$ is a subgroup of S_{3}.
Now consider the cosets $a H, H a$ where $a \in S_{3}$
$a H=\{a e, a b\}=\{a, a b\}$
and $H a=\{e a, b a\}=\{a, b a\}=\left\{a, a^{2} b\right\}$.
Observe that $a H \neq H a$ whereas if $N=\left\{e, a, a^{2}\right\}$ then we also know that N is a subgroup of S_{3}

Now for $b \in S_{3}$, we have $b N=\left\{b e, b a, b a^{2}\right\}=\left\{b, a^{2} b, a b\right\}$.
and $N b=\left\{b, a b, a^{2} b\right\}$.
In this case observe that $b N=N b$. It is not a just coincidence.
E.Galois is the first mathematician, who recognised that those subgroups of a group for which the left and right cosets coincide are of some special one. This observation led to the following notion of normal subgroups.

1.2 Normal Subgroup.

1.2.1 Definition:

Let G be a group. A subgroup N of G is called a normal subgroup of G if $x N x^{-1} \subset N$ for every $x \in G$. We denote this by writing $N \triangleleft G$.

Observe that $G,\{e\}$ are always normal subgroups of a group G where $e \in G$ is the identity. Further note that, if G is an abelian group, then every subgroup of G is normal in G.

In the following theorem, we give some equivalent conditions for a subgroup of a group to be a normal subgroup.

1.2.2 Theorem

Let N be a subgroup of a group G. Then the following are equivalent.
(i) $N \triangleleft G$
(ii) $x N x^{-1}=N$ for every $x \in G$.
(iii) $x N=N x$ for every $x \in G$.
(iv) $(x N)(y N)=x y N$ for all $x, y \in G$.

Proof.
Given that N is a subgroup of a group G.
To prove the theorem, we prove $(i) \Rightarrow(i i),(i i) \Rightarrow(i i i),(i i i) \Rightarrow(i v)$ and $(i v) \Rightarrow(i)$.
(1) $(i) \Rightarrow(i i)$

First suppose N is a normal subgroup of G i.e. $N \triangleleft G$. Let $x \in G$.
Then by definition of a normal subgroup, $x N x^{-1} \subset N$. Also we have $x^{-1} \in G$. Hence $x N x^{-1} \subset N$. Therefore $N=x\left(x^{-1} N x\right) x^{-1} \subset x N x^{-1}$ which proves that $N \subset x N x^{-1}$. Hence $x N x^{-1}=N$, proving (ii).
(2) $(i i) \Rightarrow(i i i)$

Now suppose $x N x^{-1}=N$ for every $x \in G$.

$$
N x=\left(x N x^{-1}\right) x=x N e=x N
$$

proving (iii).
(3) $(i i i) \Rightarrow(i v)$

Suppose $x N=N x$ for every $x \in G$.
Let $y \in N$
Now $(x N)(y N)=x(N y) N=x(y N) N=x y N N=x y N$.
Since $N N=N$ as N is a subgroup of G.
Therefore $x N . y N=x y N$.
(4) $(i v) \Rightarrow(i)$

Finally assume that (iv) holds
That is $x N \cdot y N=x y N$ for all $x, y \in G$.
Now $x N x^{-1}=x N x^{-1} e \subset x x^{-1} N=e N=N$ since $x^{-1} e \in x^{-1} N$.
Proving that $x N x^{-1} \subset N$ (actually we have $x N x^{-1}=N$).
Hence $N \triangleleft G$. Hence the theorem.
Some other results on normal subgroup, we relegate to exercises.

1.3 Quotient group.

If N is a normal subgroup of G, we have shown that every left coset of N in G is a right coset of N in G and vice versa, that is we cannot distinguish between the left and right cosets of N.

We denote that set of all left (right) cosets of N in G by $\frac{G}{N}$. Also recall that this set is closed under multiplication of cosets namely $x N \cdot y N=x y N$, where $x, y \in G$.

1.3.1 Definition.

Let N be a normal subgroup of a group G then the set $\frac{G}{N}$ of all left (right) cosets of N is a group under coset multiplication that $\frac{G}{N}=\{x N \mid x \in G\}$.

$$
x N . y N=x y N \text { where } x, y \in G
$$

It is easy to see that $\left(\frac{G}{N},.\right)$ is a group under multiplication the group $\frac{G}{N}$ is called the quotient group of G by N.

1.3.2 Remark.

Recall if $(G,$.$) and (G, *)$ are any two groups and $f: G \rightarrow G^{\prime}$ is a homomorphism, then the kernel of ϕ is denoted by $\operatorname{ker} \phi$ and is defined as

$$
\operatorname{ker} f=\left\{x \in G / f(x)=e^{\prime}\right\}
$$

where e^{\prime} is the identity of G^{\prime}.
Clearly $e \in \operatorname{ker} f$ and $\operatorname{ker} f$ is always a normal subgroup of G.
Further if the mapping $\phi: G \rightarrow \frac{G}{N}$ is defined by $\phi(x)=x N, x \in G$. Then ϕ is a surjective homomorphism and $\operatorname{ker} \phi=N$. This mapping ϕ is called as the canonical homomorphism.

1.3.3 Definition

Let G be a group and S be a non empty subset of G. Then the normalizer of S in G is denoted by $N(S)$ and is defined as $N(S)=\left\{x \in G / x S x^{-1}=S\right\}$.

If $S=\{a\}$ that is the normalizer of a singleton set $\{a\}$ is denoted by $N(a)$.

Clearly $N(S)$ is a subgroup of G.
Further if H is any subgroup of G, then $N(H)$ is the largest subgroup of G in which H is normal. Also if K is a subgroup on $N(H)$, then H is a normal subgroup of $K H$.

1.4 Derived group

Let G be a group. For any $a, b \in G, a b a^{-1} b^{-1}$ is called a commutator in G.

The subgroup of G generated by the set of all commutators in G is called as the commutator subgroup of G or the derived subgroup of G. We denote this by G^{\prime}.

1.4.1 Remark

It is easy to see that G^{\prime} is a normal subgroup of G and the quotient group $\frac{G}{G^{\prime}}$ is abelian. Further if $H \triangleleft G$ then $\frac{G}{H}$ is abelian if and only if $G^{\prime} \subset H$.

1.5 Isomorphism Theorems

Let N be a normal subgroup of G. We know that the quotient group $\frac{G}{N}$ is the homomorphic image of G under the canonical homomorphism (Remark 1.3.2). We now prove this, that is every homomorphic image of a group G is isomorphic to a quotient group of G. More precisely, we state the first isomorphism theorem.

Theorem 1.5.1 First Isomorphism Theorem

Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism of groups then $\frac{G}{\operatorname{ker} \phi} \simeq \operatorname{Im} \phi$. Hence in particular, if ϕ is surjective, then $\frac{G}{\operatorname{ker} \phi} \simeq G^{\prime}$.

Proof.

Given that $\phi: G \rightarrow G^{\prime}$ be a homomorphism of groups let $K=\operatorname{ker} \phi=\{x \in$ $\left.G / \phi(x)=e^{\prime}\right\}$. Also recall $\operatorname{Im} \phi=\phi(G)=\{\phi(x) / x \in G\}$.
Now define the mapping $\psi: \frac{G}{K} \rightarrow \operatorname{Im} \phi$ by $\psi(x K)=\phi(x)$ for any $x K \in \frac{G}{K}$.
First we show that ψ is well defined.
For any $x, y \in G$ let $x K=y K$ which implies $y^{-1} x \in K$. Thus we have $\phi\left(y^{-1} x\right)=e^{\prime}$ from which we get $\phi\left(y^{-1}\right) \phi(x)=e^{\prime}$ which imply $\phi(x)=\phi(y)$. Hence ψ is well defined.

We now prove that ψ is a homomorphism.
For $x, y \in G, \psi(x K . y K)=\psi(x y K)=\phi(x y)=\phi(x) \phi(y)$.
$=\psi(x K) \psi(y K)$ since K is a normal subgroup of G and ϕ is a homomorphism, proving that ψ is a homomorphism.
Also if $\psi(x K)=\psi(y K)$ we have $\phi(x)=\phi(y)$.
which imply $\phi(y)^{-1} \phi(x)=e^{\prime}$ which gives $\phi\left(y^{-1} x\right)=e^{\prime}$.
$\Rightarrow y^{-1} x \in K \Rightarrow x K=y K$, proving that ψ is one-one.
Also if $\phi(x) \in \operatorname{Im} \phi$ for $x \in G$, we have $\psi(x K)=\phi(x)$, showing that ψ is onto.
Therefore $\frac{G}{K}$ is isomorphic to $\operatorname{Im} \phi$ that is $\frac{G}{K} \simeq \operatorname{Im} \phi$.
Further if ϕ is onto then $\operatorname{Im} \phi=G^{\prime}$, we have $\frac{G}{K} \simeq G^{\prime}$, completing the proof.

As the second and third isomorphism theorems are simple consequences of first isomorphism theorem, we leave the proofs of these theorems to the reader as exercise. so we just state these results in the following theorems.

1.5.2 Theorem (Second isomorphism theorem)

Let H and N be subgroups of a group G and $N \triangleleft G$. Then $\frac{H}{H \cap N} \simeq \frac{H N}{N}$.
Proof. Exercise.

1.5.3 Theorem (Third isomorphism theorem)

Let H and K be normal subgroups of a group G and $K \subset H$. Then

$$
\frac{\frac{G}{K}}{\frac{H}{K}} \simeq \frac{G}{H}
$$

Proof. Exercise.
The following theorem provides a relationship between the subgroups (normal subgroups) of a group G and the subgroups (normal subgroups) of another group G^{\prime} where $\phi: G \rightarrow G^{\prime}$ is a homomorphism. As the proof of this theorem is simple, the details are left to the reader. This result is known as correspondence theorem.

1.5.4 Theorem (Correspondence theorem)

Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism of group G onto a group G^{\prime}. Then the following are true.
(i) $H<G \Rightarrow \phi(H)<G^{\prime}$.
(ii) $H^{\prime}<G^{\prime} \Rightarrow \phi^{-1}\left(H^{\prime}\right)<G$.
(iii) $H \triangleleft G \Rightarrow \phi(G) \triangleleft G^{\prime}$.
(iv) $H^{\prime} \triangleleft G^{\prime} \Rightarrow \phi^{-1}\left(H^{\prime}\right) \triangleleft G$.
(v) The mapping $H \mapsto \phi(H)$ is a $1-1$ correspondence between the family of subgroups of G containing $\operatorname{ker} \phi$ and the family of subgroups of G^{\prime}; further more, normal subgroups of G correspond to normal subgroups of G^{\prime}.

Proof. Exercise.

1.5.5 Remark

Let N be a normal subgroup of G. Given any subgroup H^{\prime} of $\frac{G}{N}$, there is a unique subgroup H of G such that $H^{\prime}=\frac{H}{N}$. Further $H \triangleleft G$ if and only if $\frac{H}{N} \triangleleft \frac{G}{N}$.

1.6 Definition (Maximal normal Subgroup)

Let G be a group. A normal subgroup N of G is called a maximal normal subgroup of G if
(i) $N \neq G$.
(ii) $H \triangleleft G$ and $H \supset N \Rightarrow H=N$ or $H=G$.

1.6.1 Definition

A group G is said to be simple if G has no proper normal subgroups; that is G has no normal subgroups except $\{e\}$ and G.

1.6.2 Remark:

Let N be a proper normal subgroup of G. Then N is maximal normal subgroup of G if and only if $\frac{G}{N}$ is simple.

1.6.3 Remark

Let H and K be distinct normal subgroups of a group G then $H \cap K$ is
maximal normal subgroup of H and also of K.

1.7 Summary

In this lesson we have introduced the notion of normal subgroup and then defined quotient group. Also we have defined the derived group.

Also we have observed that normal subgroups are kernels of homomorphisms and vice versa. Further we have proved first isomorphism theorem and stated correspondence theorem. At the end of the section, we have defined the notion of maximal subgroups and then stated a result which establishes the relation between simple groups and maximal normal subgroups.

1.7 Model Examination Questions

(1) Prove that the center $Z(G)=\{x \in G / x a=a x \forall a \in G\}$ is a normal subgroup of the group G.
(2) Let G be a group and H is a subgroup of index 2 , then show that H is a normal subgroup of G.
(3) If N and M are normal subgroups of a group G such that $N \cap M=\{e\}$ then show that $n m=m n$ for all $n \in N, m \in M$.
(4) Give an example of a non abelian group each of whose subgroups is normal.
(5) If N is a normal subgroup of a group G and H is a subgroup of G then show that $N H$ is a subgroup of G. Further if $H \triangleleft G$, then show that $N H$ is also normal in G.
(6) Let H be a subgroup of G such that $x^{2} \in H$ for every $x \in G$. Then show that H is a normal subgroup of G.
(7) Write down all normal subgroups of S_{4}.
(8) If G is a group with center $Z(G)$ and if $\frac{G}{Z(G)}$ is cyclic then show that G
is abelian.
(9) Show that there does not exist any group G such that $\left|\frac{G}{Z(G)}\right|=37$.
(10) Show that a non abelian group of ordet 6 is isomorphic to S_{3}.
(11) Write down all the homomorphic images of
(i) the Klein four group.
(ii) the octic group.
(12) Show that each dihedral group is isomorphic to the group of order 2.

1.9 Glossary

Normal subgroup, Quotient group, Derived group, Simple group.

LESSON-02

AUTOMORPHISMS

2.1 Introduction.

The central idea which is common to all aspects of modern algebra is the notion of homomorphism. By this we mean a mapping from one algebraic system to another algebraic system which preserves structure

In the following section, we give some basic definitions which are useful in later sections of our lesson

2.2 Basic Definitions.

Let G and H be any two groups.
(i) A mapping $\phi: G \rightarrow H$ is called a homomorphism
if $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in G$.
(ii) If $\phi: G \rightarrow H$ is a one - one homomorphism, then ϕ is called a monomorphism of G into H.

In this case we say that ϕ is an embedding of G into H
(iii) If $\phi: G \rightarrow H$ is an onto homomorphism, then ϕ is said to be an epimorphism.

In this case we say that G is homomorphic to H
or H is said to be the homomorphic image of G
(iv) If $\phi: G \rightarrow H$ is a bijective homomorphism,
then ϕ is said to be an isomorphism of G onto H, and we say that G is isomorphic to H and in this case we denote it by writing $G \simeq H$.
(v) A homomorphism of G into itself is called an endomorphism of G

2.3 Definition: Automorphism

An isomorphism of a group G onto into itself is called an automorphism, that is an automorphism of group G is an automorphism of G is an isomorphism
of G onto G itself.
The set of all automorphisms of G is denoted by $\operatorname{Aut}(\mathrm{G})$ that is $\operatorname{Aut}(G)=\{\phi: \phi: G \rightarrow G$ is an isomorphism $\}$

2.3.1 Remark:

For any group G, the identity map $i: G \rightarrow G$ defined by $i(x)=x \quad \forall x \in G$ is an automorphism

Thus for any group $G, \operatorname{Aut}(G)$ is non empty

2.3.2 Lemma:

Let G be a group. For every $g \in G$, the mapping $I_{g}: G \rightarrow G$ defined by $I_{g}(x)=g x g^{-1}$ for all $x \in G$ is an automorphism of G.

Proof: Given that G is a group.
For any $g \in G, \quad I_{g}(x)=g x g^{-1}$ for any $x \in G$
First we prove that I_{g} is a homomorphism.
Let $x, y \in G$
$I_{g}(x y)=g(x y) g^{-1}=g x g^{-1} g y g^{-1}=I_{g}(x) I_{g}(y)$.
I_{g} is one-one : For any $x, y \in G$,
If $I_{g}(x)=I_{g}(y)$, then $g x g^{-1}=g y g^{-1}$
We have $x=y$
Further I_{g} is onto: For each $x \in G$. There exists an element $g x g^{-1} \in G$ such that $I_{g}\left(g^{-1} x g\right)=g\left(g^{-1} x g\right) g^{-1}=x$
Therefore I_{g} is an automorphism of G.

2.3.3 Definition: Inner automorphism:

Let G be a group. For a given $g \in G$, the mapping $I_{g}: G \rightarrow G$ defined by $I_{g}(x)=g x g^{-1}$ for all $x \in G$ is an automorphism of G, is called an inner automorphism of G determined by $g \in G$.

The set of all inner automorphism of G is denoted by $\operatorname{Inn}(G)$ or in G.

2.3.4 Remark:

For any group $G, \operatorname{Inn}(G)$ is nonempty since every element of G determines an inner automorphism of G and $\operatorname{Inn}(G)$ is subset of $\operatorname{Aut}(G)$.

2.3.5 Theorem:

The set $\operatorname{Aut}(G)$ of all automorphisms of a group G is a group under the composition of mappings and $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$
Moreover $\frac{G}{Z(G)} \triangleleft \operatorname{Inn}(G)$
Proof: Let G be any group. Then we know that the symmetric group S_{G} is the group of all permutations of G under the composition of mappings.

Since the identity map on G is an automorphism of G, we have $\operatorname{Aut}(G)$ is non empty.

Clearly, $\operatorname{Aut}(G) \subset S_{G}$
i) First we prove that $\operatorname{Aut}(G)$ is a group

Let $\sigma, \tau \in \operatorname{Aut}(G)$ then $\sigma \tau$ and σ^{-1} are bijective.
For all $x, y \in G$, we have

$$
\begin{aligned}
(\sigma \tau)(x y)=\sigma(\tau(x y)) & =\sigma(\tau(x) \tau(y)) \\
& =\sigma(\tau(x)) \sigma(\tau(y) \\
& =(\sigma \tau)(x)(\sigma \tau)(y)
\end{aligned}
$$

Showing that $\sigma \tau \in \operatorname{Aut}(G)$
Further, $\sigma\left(\sigma^{-1}(x) \sigma^{-1}(y)\right)=\sigma\left(\sigma^{-1}(x)\right) \sigma\left(\sigma^{-1}(y)\right)$

$$
\begin{aligned}
& =\left(\sigma \sigma^{-1}\right)(x)\left(\sigma \sigma^{-1}(y)\right. \\
& =x y
\end{aligned}
$$

Which gives $\quad \sigma^{-1}(x y)=\sigma^{-1}(x) \sigma^{-1}(y)$
Thus $\quad \sigma^{-1} \in \operatorname{Aug}(G) \quad \forall \sigma \in \operatorname{Aut}(G)$

Therefore $\operatorname{Aut}(G)$ is a subgroup of the symmetric group S_{G}
Hence $\operatorname{Aut}(G)$ is a group.
(ii) We now prove $\frac{G}{Z(G)} \cong \operatorname{Inn}(G)$

Define a mapping $\quad \phi: G \rightarrow \operatorname{Aut}(G)$ by $\phi(a)=I_{a}$ for any $a \in G$
For any $\quad a, b \in G$ and for all $x \in G$,

$$
\begin{aligned}
I_{a b}(x) & =(a b) x(a b)^{-1} \\
& =a\left(b x b^{-1}\right) a^{-1} \\
& =I_{a}\left(b x b^{-1}\right) \\
& =I_{a} I_{b}(x)
\end{aligned}
$$

which implies $I_{a b}=I_{a} I_{b}$
That is $\phi(a b)=I_{a b}=I_{a} I_{b}=\phi(a) \phi(b)$
showing that ϕ is a homomorphism.
Also for every $I_{a} \in \operatorname{Aut}(G)$, there exists $a \in G$ such that $\phi(a)=I_{a}$.
Now, $\operatorname{ker} \phi=\{a \in G / \phi(a)=$ identity automorphism of $G\}$

$$
\begin{aligned}
& =\left\{a \in G / I_{a}=\text { identity automorphism of } \mathrm{G}\right\} \\
& =\left\{a \in G / I_{a}(x)=x \quad \forall x \in G\right\} \\
& =\left\{a \in G / a x a^{-1}=x \quad \forall x \in G\right\} \\
& =\{a \in G / a x=x a \quad \forall x \in G\} \\
& =Z(G), \text { the center of } \mathrm{G} .
\end{aligned}
$$

Therefore, by the fundamental theorem of homomorphism, $\frac{G}{\operatorname{ker} \phi} \cong \operatorname{Inn}(G)$
That is $\frac{G}{Z(G)} \cong \operatorname{Inn}(G)$.
(iii) Finally, we prove $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$

Let $\sigma \in \operatorname{Aut}(G)$ and $\quad I_{a} \in \operatorname{Inn}(G)$ where $a \in G$.
Now, $\quad\left(\sigma I_{a} \sigma^{-1}\right)(x)=\sigma I_{a}\left(\sigma^{-1}(x)\right)$

$$
=\sigma\left(I_{a}\left(\sigma^{-1}(x)\right)\right.
$$

$$
\begin{aligned}
& =\sigma\left(a \sigma^{-1}(x) a^{-1}\right) \\
& =\sigma(a) \sigma\left(\sigma^{-1}(x)\right) \sigma\left(a^{-1}\right) \\
& =\sigma(a) x \sigma\left(a^{-1}\right) \\
& =I_{\sigma(a)}(x) \text { for any } x \in G
\end{aligned}
$$

Therefore, we have $\sigma I_{a} \sigma^{-1}=I_{\sigma(a)}$ where $\sigma(a) \in G$.
As $\sigma(a) \in G$, we have $I_{\sigma(a)} \in \operatorname{Inn}(G)$
Hence we have $\sigma I_{a} \sigma^{-1} \in \operatorname{Inn}(G) \forall \sigma \in \operatorname{Aut}(G), I_{a} \in \operatorname{Inn}(G)$
Which shows that $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$

2.3.6 Remark:

If $Z(G)=\{e\}$, then from of the above theorem $G \cong \operatorname{Inn}(G)$.

2.3.7 Definition: Complete group

A group G is said to be complete if (i) $Z(G)=\{e\}$, and
(ii) every automorphism of G is an inner automorphism of G

That is G is complete if $\quad G \simeq \operatorname{Inn}(G)=\operatorname{Aut}(G)$.

2.3.8 Example.

Let σ be an automorphism of a group G. Then for any $x \in G, \quad \mathrm{x}$ and $\sigma(x)$ are of same order

Proof:- Given that $\sigma: G \rightarrow G$ is an automorphism where G is any group and let $x \in G$
Let $o(x)=m$ and $\quad \sigma(x)=n$
we now show that $\mathrm{m}=\mathrm{n}$
Now, $\quad(\sigma(x))^{m}=\sigma(x) \cdot \sigma(x) \cdots \sigma(x) \quad(\mathrm{m}$ times $)$

$$
=\sigma\left(x^{m}\right)
$$

$$
\begin{aligned}
& =\sigma(e) \\
& =e
\end{aligned}
$$

But $o(\sigma(x))=n$. Therefore $n / m \rightarrow(1)$
Again $\quad \sigma\left(x^{n}\right)=\sigma(x . x . x \ldots x)$
$=\sigma(x) \cdot \sigma(x) \cdot \sigma(x) \cdots \sigma(x) \quad(\mathrm{n}$ times $)$
$=(\sigma(x))^{n}$
$=e$
$=\sigma(e)$
This implies $x^{n}=e$, since σ is one-one
But $\quad o(x)=m$ Therefore $m / n \rightarrow(2)$
Form (1) and (2) it follows that $\mathrm{m}=\mathrm{n}$
In the following example, we prove S_{3} is a complete group

2.3.9 Example:

The symmetric group S_{3} is complete
Proof.We know that the symmetric group S_{3} is as described as follows

$$
\begin{aligned}
S_{3} & =\left\{<a, b>/ a^{3}=e=b^{2}, b a=a^{2} b\right\} \\
& =\left\{e, a, a^{2}, a b, a^{2} b\right\}
\end{aligned}
$$

observe that $o(a)=o\left(a^{2}\right)=3, \quad o(b)=o(a b)=o\left(a^{2} b\right)=2$
We now determine $Z\left(S_{3}\right)$.
Clearly $b a=a^{2} b \neq a b \quad \Rightarrow \quad a, b \notin Z\left(S_{3}\right)$
and $(a b)\left(a^{2} b\right)=a(b a) a b=a \cdot a^{2} b a b=b a b=a^{2} b \cdot b=a^{2}$
$\left(a^{2} b\right)(a b)=a^{2}(b a) b=a^{2}\left(a^{2} b\right) b=a^{4} b^{2}=a e=a$
Thus $(a b)\left(a^{2} b\right) \neq\left(a^{2} b\right)(a b)$, from which we have $a b, a^{2} b \notin Z\left(S_{3}\right)$
Further, if $a^{2} \in Z\left(S_{3}\right)$ then $a=a^{2} . a^{2} \in Z\left(S_{3}\right)$, a contradiction.
Therefore $Z\left(S_{3}\right)=\{e\}$

Hence by theorem 2.3.3, we have $\frac{S_{3}}{Z\left(S_{3}\right)} \simeq \operatorname{Inn}\left(S_{3}\right)$
That is $S_{3} \simeq \operatorname{Inn}\left(S_{3}\right)$
We now define $\operatorname{Aut}\left(S_{3}\right)$
For any $\sigma \in S_{3}$, we have $\sigma(a)=a$ or a^{2} and
$\sigma(b)=b, a b$ or $a^{2} b$ (in view of example 2.3.6)
as a,b are generators of $S_{3}, \sigma(x)$ is known for any $x \in S_{3}$
Therefore $\left|A u t\left(S_{3}\right)\right| \leq 6$
since $\operatorname{Inn}\left(S_{3}\right)$ is a subgroup of order 6
we must have $\left|\operatorname{Aut}\left(S_{3}\right)\right|=6$ and $\operatorname{Inn}\left(S_{3}\right)=\operatorname{Aut}\left(S_{3}\right)$
Therefore $S_{3} \simeq \operatorname{Inn}\left(S_{3}\right)=\operatorname{Aut}\left(S_{3}\right)$
Hence S_{3} is a complete group.

2.3.10 Example:

Let G be a finite abelian group of order n and m be a fixed positive integer relatively prime to n.

Then the mapping $\sigma: G \rightarrow G$ defined by $\sigma(x)=x^{m}$ is an automorphism.
Solution:- Given that G is a finite abelian group of order n , and m be a natural number such that $(m, n)=1$

Also $\sigma: G \rightarrow G$ is given by $\sigma(x)=x^{m}$
For any $x, y \in G, \quad \sigma(x y)=(x y)^{m}=x^{m} y^{m} \quad$ since G is abelian

$$
=\sigma(x) \cdot \sigma(y)
$$

proving that σ is a homomorphism.
since m and n are relatively prime, there exists integers u and v such that $\mathrm{mu}+\mathrm{nv}=1$

For all $x \in G$, we have $x^{n}=e$ since $|G|=n$
$x^{1}=x^{m u+n v}=x^{m u} \cdot x^{n v}=x^{m u} \cdot\left(x^{n}\right)^{v}=x^{m u}$
Therefore, for every $x \in G$ there exists an element $x^{u} \in G$ such that $\sigma\left(x^{u}\right)=x^{m u}=x$
showing that σ is surjective.

$$
\begin{aligned}
\operatorname{ker} & \sigma=\{x \in G / \sigma(x)=e\} \\
& =\left\{x \in G / x^{m}=e\right\} \\
& =\left\{x \in G / x^{m u}=e\right\} \\
& =\{x \in G / x=e\}=\{e\}
\end{aligned}
$$

showing that σ is one-one
Therefore σ is an automorphism of G

2.3.11 Example:

If G is an abelian group, then its inner automorphism group is trivial
Proof:- Given that G is an abelian group and
I_{g} be the inner automorphism determined by $g \in G$
That is for all $g \in G, \quad I_{g}(x)=g x g^{-1} \forall x \in G$
$I_{g}(x)=g x g^{-1}$
$=g g^{-1} x$
$=x=i(x)$ for all $x \in G$ and for any $g \in G$
$I_{g}=i$
Therefore $\operatorname{Inn}(g)=\{i / i: G \rightarrow G$ is the identity map $\}$

2.3.12 Example:

If G is a group of order 2 then $\operatorname{Aut}(G)$ is trivial
Proof:- Let G be a group of order 2 and $G=\{e, a\}$
Then $\operatorname{Inn}(G)$ is trivial. Since every group of order 2 is abelian.
If $\sigma \in \operatorname{Aut}(G)$ then $\sigma(e)=e$ and $\sigma(a)=a$

This implies that $\operatorname{Aut}(G)$ is trivial.

2.3.13 Example:

An abelian group with the condition that
$a^{2} \neq e$ for some $a \in G$, has a non trivial automorphism.
Proof:- Let G be an abelian group with the condition that $a^{2}=e$ for some
$a \in G$
That is $a \neq a^{-1}$
Now, define $\sigma: G \rightarrow G$ by $\sigma(x)=x^{-1}$
Clearly, σ is an automorphism, since G is abelian
Also, $\sigma(a)=a^{-1} \neq a$
showing that σ is non identity automorphism.
Thus $\operatorname{Aut}(G)$ is non trivial.

2.3.14 Example:

A non abelian group G always has a non trivial automorphism. Moreover if G is finite $|\operatorname{Inn}(G)|=[G: Z(G)]$
Proof:- Let G is a non abelian group, then there exists elements $a, b \in G$ such that $a b \neq b a$ that is $a b a^{-1} \neq b$
For $a \in G$ we have $I_{a} \in \operatorname{Inn}(G)$ such that $I_{a}(b)=a b a^{-1} \neq b$
Therefore, I_{a} is a non identity automorphism.
Thus G has a non trivial automorphism.
Further if G is finite non abelian group then its center $Z(G)$ is a subgroup
of G and $\quad Z(G) \neq G$
Therefore $|Z(G)<|G|$
By Theorem 1.1.7, we have $\frac{G}{Z(G)} \simeq \operatorname{Inn}(G)$
This implies $|\operatorname{Inn}(G)|=\left|\frac{G}{Z(G)}\right|>1$.
showing that there exists a non trivial (inner) automorphism and
$|\operatorname{Inn}(G)|=[G: Z(G)]$

2.3.15 Example:

A finite group G having more than two elements and with the condition that $x^{2} \neq e$ for some $x \in G$ must have a non trivial automorphism

Solution: Given that G is a finite group. We consider two cases
Case(i): First assume that G is an abelian
Now define $\quad \sigma: G \rightarrow G$ by $\sigma(x)=x^{-1} \quad \forall x \in G$
Then σ is an automorphism of G
Infact
σ is a homomorphism
since $\sigma(x y)=(x y)^{-1}=x^{-1} y^{-1}=\sigma(x) \sigma(y)$ as G is abelian .
Also note that σ is one-one.
For if $\sigma(x)=\sigma(y)$, for $\quad x, y \in G$

$$
\begin{aligned}
& x^{-1}=y^{-1} \\
& x=y
\end{aligned}
$$

σ is onto. Since for any $x \in G$, we have $x^{-1} \in G$ is such that
$\sigma\left(x^{-}\right)=(x)^{-1}=x$
Therefore σ is non identity automorphism.
Case(ii): Now assume that G is non abelian
Define $\tau: G \rightarrow G$ by $\tau(g)=x g x^{-1}$

$$
\text { If } \quad \tau(g)=\tau(h)
$$

$$
\text { then } x g x^{-1}=x h x^{-1} \Rightarrow g=h
$$

showing that τ is one-one.
For any $g \in G$ consider $x^{-1} g x \in G$
$\tau\left(x^{-1} g x\right)=x\left(x^{-1} g x\right) x^{-1}=g$
proving that τ is onto
Also for any $g, h \in G$,
$\tau(g h)=x(g h) x^{-1}=x g x^{-1} x h x^{-1}=\tau(g) \tau(h)$
Proving that $\tau \in \operatorname{Aut}(G)$.
Therefore τ is a non trivial inner automorphism
Hence $|\operatorname{Aut}(G)|>1$, in this case also .

2.3.16 Example:

If G is an infinite cyclic group then $|A u t(G)|=2$
Proof:- Given that G is an infinite cyclic group.
We know that every infinite cyclic group is isomorphic to $(\mathbb{Z},+)$
Further we have $\mathbb{Z}=<1>=<-1>$
Let $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ be an automorphism
Since 1 is a generator of \mathbb{Z}, we have $\sigma(1)$ is also a generator of \mathbb{Z}
Thus $\sigma(1)$ has two choices namely 1 and -1 .
If $\quad \sigma_{1}(1)=1$
For $n \neq 1, \quad \sigma_{1}(n)=\sigma_{1}(1+1+1+\cdot+1) \quad(\mathrm{n}$ times $)$

$$
\begin{aligned}
& =\sigma_{1}(1)+\sigma_{1}(1)+\cdot+\sigma_{1}(1) \\
& =n .1=n
\end{aligned}
$$

Also we know that $\sigma_{1}(-n)=-\sigma_{1}(n)=-n \quad$ since σ_{1} is a homomorphism
This shows that $\sigma_{1}=i, \quad$ the identity automorphism of \mathbb{Z}.
If $\sigma_{2}(1)=-1$ then $\quad \sigma_{2}(n)=-n \quad \forall n \in \mathbb{Z}$
Thus $\quad \sigma_{2}^{2}=i$
Therefore $\quad|\operatorname{Aut}(\mathbb{Z})|=2$

2.3.17 Example:

Let $G=[a]$ be a finite cyclic group of order n . Then the mapping σ defined by $a \vdash a^{m}$ is an automorphism of G if and only if $(\mathrm{m}, \mathrm{n})=1$

Proof:- Given that $G=[a]$ and $|G|=n$. Hence $o(a)=n$
we have $\quad \sigma: G \rightarrow G$ defined by $\sigma(x)=x^{m}$
If $(\mathrm{m}, \mathrm{n})=1$ then by example 2.3.10, we have σ is an automorphism
Conversely, Suppose that σ is an automorphism of G.
Then the order of $\sigma(a)=a^{m}$ is same as that order of a.
That is $o\left(a^{m}\right)=o(a)=n$.
If $(\mathrm{m}, \mathrm{n})=\mathrm{d}$ then $\left((a)^{m}\right)^{\left(\frac{n}{d}\right)}=\left((a)^{n}\right)^{\left(\frac{m}{d}\right)}=e$
since $o(a)=n$ and also using the fact $o\left(a^{m}\right)=n$
We have n divides $\frac{n}{d}$. This possible if $\mathrm{d}=1$
Therefore, $(\mathrm{m}, \mathrm{n})=1$

2.3.18 Example:

If G is a finite cyclic group of order n , then show that $|\operatorname{Aut}(G)|=\phi(n)$ where ϕ is Euler's totient function.

Proof:- Let $G=[a],|G|=$ nand $\quad \sigma \in \operatorname{Aut}(G)$.
If $x \in G$ then $x=a^{k}$ for some $k \in \mathbb{N}$.
Now, $\quad \sigma(x)=\sigma\left(a^{k}\right)=(\sigma(a))^{k}$
Therefore σ is completely known if $\sigma(a)$ is known
Let $\sigma(a)=a^{m}, \quad m \leq n$
By example 2.3.17, we know that
$\sigma \in \operatorname{Aut}(G)$ if and only if $(\mathrm{m}, \mathrm{n})=1$.
That is each positive integer less than n and relatively prime to n determines a unique $\quad \sigma \in \operatorname{Aut}(G)$ and conversely each $\sigma \in \operatorname{Aut}(G)$ determines a unique positive integer m less than n and relatively prime to n .

Therefore $|\operatorname{Aut}(G)|=\mid\left\{m \in \mathbb{Z}^{+} / 1 \leq m \leq n, \quad(m, n)=1\right\}=\phi(n)$

2.3.19 Example:

Show that only cyclic group G of order $n>2$ has an automorphism which is not an inner automorphism

Proof: Given that G is cyclic.
Therefore G is abelian.
Hence $\operatorname{Inn}(G)$ is trivial.
We have $|\operatorname{Aut}(G)|=\phi(n)>1$ since $n>2$.
Thus G has an automorphism which is not an inner automorphism.

2.4 Summary.

In section 2.3, we have defined inner automorphism of a group and complete group. Also we have determined the automorphism groups of a finite cyclic group and infinite cyclic group.

2.5 Model Examination Questions.

(1) If K is the klein four group, then find $\operatorname{Aut}(G)$ also determine $\operatorname{Aut}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.
(2) Let G be a group and $\sigma: G \rightarrow G$ is an automorphism of G . If for $a \in G, N(a)=\{x \in G / x a=a x\}$. Then prove that $N(\sigma(a))=\sigma(N(a))$
(3) Let G be the group of order 9 generated by elements a and b, where $a^{3}=b^{3}=e$. Then find $\operatorname{Aut}(G)$.
(4) Show that $\operatorname{Aut}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right) \simeq \operatorname{Aut}\left(\mathbb{Z}_{2}\right) \times \operatorname{Aut}\left(\mathbb{Z}_{3}\right)$.

2.6 Glossary.

Automorphism, Inner automorphism, Complete group

LESSON-03

G-SETS AND CLASS EQUATION

3.1 Introduction.

Group actions are powerful tool for proving theorems for abstract group and for determining the structure of specific groups. The concept of an action is a method for studying how an algebraic structure interact with other structures. In this lesson we study the action of a group G on an arbitrary set first then on the group itself. We deduce orbit decomposition of any arbitrary set X under the action of a group G. Moreover we establish Cayley's theorem. Further using the conjugacy relation among the elements of a group G, we derive class equation. This class equations has numerous applications in studying finite groups. Also at the end of this lesson, we prove Burnside theorem.

3.2 Action of a group on a set.

3.2.1 Definition:

Let G be a group and X is any set. Then we say that G acts on X if there is a mapping $\phi: G \times X \rightarrow X$, with $\phi(a, x)$ written as $a * x$ such that for all $a, b \in G, x \in X$
(i) $a *(b * x)=(a b) * x$
(ii) $e * x=x$

The mapping ϕ is called the action of G on X and X is said to be a G-set.
In the above definition, we have defined the action of G on X on the left side. In a similar manner, we can define action on the right side also. From now onwards we restrict ourselves to groups acting on the left side only

3.2.2 Examples:

(a) Let G be any group. Take $X=G$. Define $a * x=a x a^{-1}, \quad a \in G, x \in X$

For all $a, b, x \in G$ we have
(i) $a *(b * x)=a *\left(b x b^{-1}\right)=a b x b^{-1} a^{-1}=(a b) x(a b)^{-1}=a b * x$
(ii) $e * x=e x e^{-1}=x$

Therefore G is a G-set.
This action of the group G on itself is called conjugation.
(b) Let G be a group and $\mathrm{X}=\mathrm{G}$. Define $a * x=a x, a \in G, x \in G$

For all $a, b, x \in G$ we have
(i) $a *(b * x)=a(b x)=(a b) x=(a b) * x$
(ii) $e * x=e x=x$

Showing that G is a G-set.
This action of the group G on it self is called translation.
(c) Let G be a group and H is subgroup of G . Let $X=\frac{G}{H}$ of left cosets can be made into a $G-$ set by defining $a * x H=a x H, a \in G, x H \in \frac{G}{H}$.
Infact, for any $a, b \in G, x H \in \frac{G}{H}$, we have
(i) $a *(b * x H)=a *(b x H)=a(b x) H=(a b) x H=a b * x H$
(ii) $e * x H=e x$

Thus $\frac{G}{H}$ is G-set.
(d) Let G be a group and $H \triangleleft G$.

Consider $\frac{G}{H}$, the set of left cosets of H in G .
Define $a * x H=a x a^{-1} H, a \in G, x H \in \frac{G}{H}$.
For all $a, b \in G, x H \in \frac{G}{H}$ we have
(i) $a *(b * x H)=a *\left(b x b^{-1} H\right)=a b x b^{-1} a^{-1} H$

$$
=a b x(a b)^{-1} H
$$

$$
=a b * x H
$$

(ii) $e * x H=e x e^{-1} H=x H$

Hence $\frac{G}{H}$ is a G-set.

3.2.3 Remark:

(i) We can also define action of G on X on the right hand side also by defining $\phi: X \times G \rightarrow X$ with $\phi(x, a)$ written as $x * a$ satisfying
(i) $(x * a) * b=x *(a b)$
(ii) $x * e=x \quad \forall a, b \in G, x \in X$.
(ii) If X is a G-set, we write ax instead $a * x$ for the sake of simplicity.

3.2.4 Theorem:

Let G be a group and X is a non empty set. Then
(i) If X is a G-set, then the action of G on X induces a homomorphism $\phi: G \rightarrow S_{X}$.
(ii) Any homomorphism $\phi: G \rightarrow S_{X}$ induces an action of G onto X.

Proof: (i) Given that X is a G-set.
Therefore there is a map from $G \times X$ into X and
the image of $(a, x) \in G \times X$ is denoted by $a * x$
Now, define $\phi: G \rightarrow S_{X}$. by $\phi(a)(x)=a * x a \in G, x \in X$
Note that $\phi(a) \in S_{X}$, the permutation group on X.
Clearly $\phi(a)$ is bijective map on X .
Let $a, b \in G$. For all $x \in X$, we have

$$
\begin{aligned}
(\phi(a b))(x)=(a b) * x & =a *(b * x) \\
& =\phi(a)(\phi(b)(x)) \\
& =\phi(a) \phi(b)(x) \\
\Rightarrow \phi(a b)=\phi(a) \phi(b) & \forall a, b \in G
\end{aligned}
$$

Hence $\phi: G \rightarrow S_{X}$ is a homomorphism that arises due to the action of G on

X

(ii) Suppose $\phi: G \rightarrow S_{X}$ is a homomorphism.

Define $a * x=(\phi(a))(x)$ where $a \in G, x \in X$.
This defines a mapping whose domain is $G \times X$ and codomain is X
Now, $a *(b * x)=\phi(a)(\phi(b)(x))$ $=(\phi(a) \phi(b))(x)$ $=\phi(a b)(x)$

$$
=a b * x
$$

since ϕ is homomorphism .
$e * x=(\phi(e))(x)=x$ as $\phi(e)$ is the identity on X .
Therefore X is a G-set.

3.2.5 CAYLEY'S THEOREM:

Let G be a group. Then G is isomorphic into the symmetric group S_{G}
Proof: Let G be a group. we now regard G itself as a G-set and apply the first part of the Theorem 3.2.4

Define $a * x=a x, \quad a \in G, x \in G$
Clearly $e * x=x \forall x \in G$ and since by associativity in G
we have $a *(b * x)=a b * x \quad \forall a, b, x \in G$.
Thus G is a G-set and the action of G itself is $a * x=a x \forall a \in G, x \in G$
Thus by part (i) of the Theorem 3.2.4, this action induces a homomorphism.
$\phi: G \rightarrow S_{G}$ where $\phi(a)(x)=a * x=a x$ for all $a \in G, x \in G$.
Now $\operatorname{ker} \phi=\left\{a \in G / \phi(a)=\right.$ the identity of $\left.S_{G}\right\}$

$$
\begin{aligned}
& =\{a \in G /(\phi(a))(x)=i(x) \forall x \in G\} \\
& =\{a \in G / a x=x \forall x \in G\} \\
& =\{a \in G / a=e\} \quad=\{e\}
\end{aligned}
$$

Showing that is ϕ injective
Therefore G is isomorphic into S_{G}
Hence the theorem.

3.2.6 Remark :

An isomorphism of a group G into a group permutations is called a faithful representation of G by a group of permutations.

The action of G on $\frac{G}{H}$ gives another representation of G by a group of permutations, which is not necessary faithful.

3.2.7 Theorem :

Let G be a group and H is a subgroup of index n. Then there is a homomorphism $\phi: G \rightarrow S_{n}$ such that $\operatorname{ker} \phi=\bigcap_{x \in G} x H x^{-1}$.
Proof: Given that G is a group and H is a subgroup of index n .
Let $\frac{G}{H}$ be the set of all left cosets of H in G and $\left|\frac{G}{H}\right|=n$.
Now, define $a * x H=a x H, a \in G, x H \in \frac{G}{H}$
Clearly, this defines a mapping from $G \times \frac{G}{H}$ into $\frac{G}{H}$
For all $a, b \in G, x H \in \frac{G}{H}$, we have
(i) $a *(b * x H)=a(b x) H=(a b) x H=(a b) * x H$
(ii) $e * x H=e x H=x H$.

Therefore $\frac{G}{H}$ is a G-set.
Thus the above action of G on $\frac{G}{H}$ induces a homomorphism
$\phi_{1}: G \rightarrow S_{\frac{G}{H}}$ defined by $\left(\phi_{1}(a)\right)(x H)=a x H$
Now, $\operatorname{ker} \phi_{1}=\left\{a \in G / \phi_{1}(a)=\right.$ identity of $\left.S_{\frac{G}{H}}\right\}$

$$
\begin{aligned}
& =\left\{a \in G /\left(\left(\phi_{1}(a)\right)(x H)=x H \forall x \in G\right\}\right. \\
& =\{a \in G / a x H=x H \forall x \in G\} \\
& =\left\{a \in G / x^{-1} a x H=H \forall x \in G\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{a \in G / x^{-1} a x \in H \forall x \in G\right\} \\
& =\left\{a \in G / a \in x H x^{-1} \forall x \in G\right\} \\
& =\bigcap_{x \in G} x H x^{-1} .
\end{aligned}
$$

But we have $S_{\frac{G}{H}} \simeq S_{n}$ sice $\left|\frac{G}{H}\right|=n$,
Now let $\phi_{2}: S_{\frac{G}{H}} \rightarrow S_{n}$ be the isomorphism
Then let $\phi=\phi_{2} \phi_{1}$
Further note that $\phi: G \rightarrow S_{n}$ is a homomorphism since the composition of homomorphisms is a homomorphism and
$\operatorname{ker} \phi=\left\{a \in G / \phi(a)=\right.$ identity of $\left.S_{n}\right\}$

$$
\begin{aligned}
& =\left\{a \in G / \phi_{2}\left(\phi_{1}(a)\right)=\text { identity of } S_{n}\right\} \\
& =\left\{a \in G / \phi_{1}(a)=\text { identity of } S_{\frac{G}{H}}\right\} \\
& =\operatorname{ker} \phi_{1}
\end{aligned}
$$

Since ϕ_{2} is an isomorphism
Therefore ker $\phi=\bigcap_{x \in G} x H x^{-1}$.

3.2.8 Remark:

If $H=\{e\}$, we get the Cayley's representation in which case it is faithful.

3.2.9 Corollary:

Let G be a group with a normal subgroup H of index n , then $\frac{G}{H}$ is isomorphic into S_{n}.
Proof: From the Theorem 3.2.7, when H is a subgroup of G, there is a homomorphism $\phi: G \rightarrow S_{n}$ with ker ϕ with $\operatorname{ker} \phi=\bigcap_{x \in G} x H x^{-1}$.
Given that $H \triangleleft G$ and $\operatorname{ker} \phi=H$ Since $x H x^{-1}=H$ for all $x \in G$.
Therefore by first isomorphism theorem $\frac{G}{\operatorname{ker} \phi} \simeq \operatorname{Im}(\phi)$
Thus $\frac{G}{H}$ is isomorphic into $S_{n} \quad\left(\right.$ where $\left.\operatorname{Im}(\phi)<S_{n}\right)$
Hence the Corollary.
3.2.10 Corollary: Let G be a simple group with a subgroup $\mathrm{H}(\neq G)$ of a finite index n then G is isomorphic into S_{n}.

Proof: Let H be a subgroup of $\mathrm{G}, H \neq G$ and $[G: H]=n$
By Theorem 3.2.7, there is a homomorphism $\phi: G \rightarrow S_{n}$ such that
$\operatorname{ker} \phi=\bigcap_{x \in G} x H x^{-1}$.
Since $|H|<|G|$, we must have $|\operatorname{ker} \phi|<|G|$
We have $\operatorname{ker} \phi \triangleleft G$. Since G is simple, $\operatorname{ker} \phi=\{e\}$.
By the first isomorphism theorem $\frac{G}{\operatorname{ker} \phi} \simeq \operatorname{Im}(\phi)$
That is G is isomorphic into S_{n}
Hence the result.

3.3 Orbit and Stabilizers:

3.3.1 Definition: Orbit

Let G be a group acting on a set X and let $x \in X$. Then the set $G x=\{a * x / a \in G\}=\{a x / a \in G\}$ is called the Orbit of x in G .

3.3.2 Definition: Stabilizer

Let G be a group acting on a set X and let $x \in X$.
Then the set $G_{x}=\{g \in G / g x=x\}$ is called the stabilizer of x in G
Some times it is called as the isotropy group of x in G
3.3.3 Lemma: G_{x} is a subgroup of G.

Proof: We have G is a group acting on a set X
That is for all $g \in G, \quad y \in X$, we have $g * y \in X$ and
$a *(b * y)=(a b) * y, \quad e * y=y, \quad \forall a, b \in G$ and $y \in X$.
Let $x \in X$ and the stabilizer of x in G is denoted by G_{x} and
$G_{x}=\{a \in G / a * x=x\}$
Clearly $G_{x} \neq \phi$ and $G_{x} \subset G$

For any $g_{1}, g_{2} \in G_{x}$, we have

$$
\begin{aligned}
& \left(g_{1} g_{2}\right) * x=g_{1} *\left(g_{2} * x\right)=g_{1} * x=x \\
& x=e * x=\left(g_{1}^{-1} g_{1}\right) * x=g_{1}^{-1} *\left(g_{1} * x\right)=\left(g_{1}^{-1} * x\right) \\
& \Rightarrow \quad g_{1} g_{2} \in G_{x} \text { and } g_{1}^{-1} \in G_{x} \forall g_{1}, g_{2} \in G_{x}
\end{aligned}
$$

showing that G_{x} is a subgroup of G

3.3.4 Remark:

(i) $G_{x} \subset X$
(ii) For any $y \in G_{x}, G_{x}=G_{y}$

Let $y=b * x, \quad b \in G$. Then

$$
\begin{aligned}
G_{y}=\{a * y / a \in G\} & =\{a *(b * x) / a \in G\} \\
& =\{(a b) * x / a \in G\} \\
& =\{c * x / c \in G\} \\
& =G_{x}
\end{aligned}
$$

(iii) If G acts on itself by translation then for $x \in G$
$G_{x}=\{a \in G / a * x=x\}=\{a \in G / a x=x\}=\{e\}$
$G_{x}=\{a * x / a \in G\}=\{a x / a \in G\}=G$
(iv) If G acts on itself by conjugation then for $x \in G$,

$$
\begin{aligned}
G_{x}=\{a \in G / a * x=x\} & =\left\{a \in G / a x a^{-1}=x\right\} \\
& =\{a \in G / a x=x a\} \\
& =N(x)
\end{aligned}
$$

In this case the stabilizer of an element x in G is the normalizer of x in G .
(v) Let H be a normal subgroup of G and consider the set $\frac{G}{H}$

The stabilizer of a left coset xH is the subgroup

$$
\begin{aligned}
G_{x H} & =\{g \in G / g x H=x H\} \\
& =\left\{g \in G / x^{-1} g x H=H\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{g \in G / x^{-1} g x \in H\right\} \\
& =\left\{g \in G / g \in x H x^{-1}\right\} \\
& =x H x^{-1}
\end{aligned}
$$

3.3.5 Conjugate Class of an element:

Let G be a group and $x \in G$, Then
$C(x)=\left\{a x a^{-1} / a \in G\right\}$ is called the Conjugate class of x .

3.3.6 Remark:

(i) $x \in C(x)$ and hence $c(x)$ is non empty.
(ii) If G acts on itself by Conjugation then for $x \in G$

$$
\begin{aligned}
G_{x} & =\{a * x / a \in G\} \\
& =\left\{a x a^{-1} / a \in G\right\} \\
& =C(x)
\end{aligned}
$$

That is the Orbit of x in G is the conjugate class of x .

$$
\text { Also, } \begin{aligned}
G_{x} & =\{a \in G / a * x=x\} \\
& =\left\{a \in G / a x a^{-1}=x\right\} \\
& =\{a \in G / a x=x a\} \\
& =N(a)
\end{aligned}
$$

3.3.7 Theorem:

Let G be a group acting on a set X . Then the set of all Orbits in X under G is a partition of X .
For any $x \in X$ there is a bijection $G x \rightarrow \frac{G}{G_{x}}$ and hence

$$
|G x|=\left[G: G_{x}\right]
$$

Therefore if X is a finite set $|X|=\sum_{x \in C}\left[G: G_{x}\right]$
where C is a subset of X containing exactly one elements from each Orbit.
Proof: Given that the group G acts on X.

For all $a, b \in G, \quad x \in X$, we have $a * x \in X$ satisfying
(i) $a *(b * x)=(a b) * x$ and
(ii) $e * x=x$.

For every $x \in X$, we have
$G_{x}=\{a \in G / a * x=x\}$ is stabilizer of x
And $G x=\{a * x / a \in G\}$ is the orbit of x .
Also note that the stabilizer G_{x} is a subgroup of G and $G x$, the orbit of x is a subset of X .

Now define a relation \sim on X as follows
For $x, y \in X, \quad x \sim y$ means $x=a * y$ for some $a \in G$.
(i) For all $x \in X$, we have $x=e * x \Rightarrow x \sim x \forall x \in X$

Thus \sim is reflexive.
(ii) Suppose $x \sim y$ then $x=a * y$ for some $a \in G$

As $y=e * y=\left(a^{-1} a\right) * y$

$$
\begin{aligned}
& =a^{-1} *(a * y) \\
& =a^{-1} * x
\end{aligned}
$$

Showing that $y \sim x$
Thus \sim is symmetric
(iii) If $x \sim y, y \sim z$ then
$x=a * y, \quad y=b * z$ for some $a, b \in G$
Now $(a b) * z=a *(b * z)=a * y=x$
$\Rightarrow \quad x \sim z$
Thus \sim is transitive.
Hence \sim is an equivalence relation on X .
Therefore \sim partitions X into mutually disjoint equivalence classes whose
union is X .
Let \bar{x} be the equivalence class of $x \in X$
Now, $\bar{x}=\{y \in x / y \sim x\}$

$$
\begin{aligned}
& =\{y \in X / y=a * x, a \in G\} \\
& =\{a * x / a \in G\} \\
& =G x \\
& =\text { the orbit of } \mathrm{x} \text { in } \mathrm{G}
\end{aligned}
$$

This shows that the set of all orbits forms a partition of X and hence
$X=\bigcup_{x \in C} G x \longrightarrow(1)$
Note that the above union is disjoint.
Where C is any subset of X containing exactly one element from each orbit.
For a given $x \in X$, define a mapping $\phi: G x \rightarrow \frac{G}{G_{x}}$ by
$\phi(a * x)=a G_{x}$ for all $a \in G$
Now, for any $a, b \in G$
Let $a * x=b * x$
Now $\left(a^{-1} b\right) * x=a^{-1} *(b * x)$

$$
\begin{aligned}
& =a^{-1} *(a * x) \\
& =\left(a^{-1} a\right) * x \\
& =e * x \\
& =x
\end{aligned}
$$

and $\left(a^{-1} b\right) * x=x \Rightarrow a * x=a *\left(\left(a^{-1} b\right) * x\right)$

$$
=\left(a a^{-1} b\right) * x
$$

$$
=(e b) * x
$$

$$
=b * x
$$

Therefore $a * x=b * x \Leftrightarrow\left(a^{-1} b\right) * x=x$

$$
\begin{aligned}
& \Leftrightarrow a^{-1} b \in G_{x} \\
& \Leftrightarrow a G_{x}=b G_{x} \\
& \Leftrightarrow \phi(a * x)=\phi(b * x)
\end{aligned}
$$

This shows that ϕ is well defined and injective.
For every left Coset $a G_{x}$, there exists an element
$a * x \in G_{x}$ such that $\phi(a * x)=a G_{x}$
Showing that ϕ is surjective.
Hence ϕ is a bijection.
Therefore, $|G x|=\frac{G}{G_{x}}=\left[G: G_{x}\right] \longrightarrow(2)$
Suppose X is a finite set. Then from (1) and (2)
We have $|X|=\sum_{x \in C}|G x|$

$$
=\sum_{x \in C}^{x \in C}\left[G: G_{x}\right]
$$

Since X is the disjoint union of orbits $G x$

3.3.8 Definition:

The Orbit decomposition of a set X under a group G .

The partition $P=\{G x / x \in C\}$ of X under action of G on X is called the orbit decomposition of X under G , where C is a subset of X containing exactly one element from each orbit

3.3.9 Remark :

Let G be a group and $a \in G$. Recall that
(i) $C(a)=\left\{x a x^{-1} / x \in G\right\}$ is called the conjugate class of a in G.
(ii) $N(a)=\left\{a \in G / x a x^{-1}=a\right\}$ is called the normalizer of a in G

3.3.10 Theorem:

Let G be a group. Then the following are true.
(i) The set of Conjugate class of G is a partition of G .
(ii) $|C(a)|=[G: N(a)]$
(iii) If G is a finite set then $|G|=\sum[G: N(a)]$, where the summation runs over exactly one element from each conjugate class.

Proof: Given that G is a group.
(i) Define a relation \sim on G as follows

For, $a, b \in G$
$a \sim b \Leftrightarrow a=x b x^{-1}$ for some $x \in G$.
Now it is easy to see that the relation \sim is an equivalence relation on G.
Therefore \sim partitions G into mutually disjoint equivalence classes.
Let \bar{a} be the equivalence class of $a \in G$.
Then $\bar{a}=\{y \in G / y \sim a\}$

$$
\begin{aligned}
& =\left\{x a x^{-1} / x \in G\right\} \\
& =C(a), \quad \text { the conjugate class of a }
\end{aligned}
$$

Now $a \in C(a)$ since $a=e a e^{-1}$
Thus $a \in C(a) \subset G$

$$
\begin{aligned}
& \Rightarrow\{a\} \subset C(a) \subset G \\
& \Rightarrow \quad G=\bigcup_{a \in C} C(a) \longrightarrow(1)
\end{aligned}
$$

a disjoint union of conjugate classes, and C contains exactly one element from each conjugate class.
(ii) Let $a \in G$. Define a map $\phi: C(a) \rightarrow \frac{G}{N(a)}$ by $\phi\left(x a x^{-1}\right)=x N(a)$.

For every $x N(a) \in \frac{G}{N(a)}$ there exists $x \in G, x a x^{-1} \in N(a)$
such that $\phi\left(\right.$ xax $\left.^{-1}\right)=x N(a)$.
Showing that ϕ is surjective.
For any $x, y \in G$
If $\phi\left(x a x^{-1}\right)=\phi\left(y a y^{-1}\right)$

$$
\begin{aligned}
& \Rightarrow \quad x N(a)=y N(a) \\
& \Rightarrow \quad y^{-1} x \in N(a) \\
& \Rightarrow \quad y^{-1} x a=a y^{-1} x \\
& \Rightarrow \quad x a x^{-1}=y a y^{-1} \\
& \Rightarrow \quad \phi \text { is injective. }
\end{aligned}
$$

Therefore ϕ is bijective and hence
$|C(a)|=\left|\frac{G}{N(a)}\right|=[G: N(a)] \longrightarrow(2)$
(iii) In case if G is finite, then from (1) and(2) we have
$|G|=\sum_{a \in C}|C(a)|=\sum_{a \in C}[G: N(a)]$
where the summation is extended over exactly one element from each Conjugate class.

3.4 The Class Equation.

Let G be any group and we know that G acts on itself by conjugation action. Then the partition $\mathcal{P}=\{c(a) / a \in C\}$ of G under this conjugation action is called the class decomposition of G and the equation

$$
|G|=\sum_{a \in C}[G: N(a)]
$$

is called as the class equation of the group G Where C is a subset of G containing exactly one element from each conjugate class.

3.4.1 Definition.

Let G be a group and S be a subset of G. If $x \in G$, then the set

$$
x^{-1} S x=\left\{x^{-1} s x / s \in S\right\}
$$

is called a conjugate of S.

3.4.2 Definition.

Let S, T be two subsets of a group G. Then T is said to be conjugate to S
if there exists $x \in G$ such that $T=x S x^{-1}$.

3.4.3 Remark.

The relation being "conjugate" is an equivalence relation in the power set $\mathbb{P}(G)$ of the group G.

Let \sim be the relation conjugate to that is $S, T \in \mathbb{P}(G)$, then $S \sim T$ if and only if $T=x S x^{-1}$ for some $x \in G$.

Clearly for $S \in \mathbb{P}(G), S=e S e^{-1}$. Therefore we have $S \sim S$ and hence \sim is reflexive.

Let $S, T \in \mathbb{P}(G)$ and $S \sim T$ then $S=x T x^{-1}$ for some $x \in G$.
Thus we have $T=x^{-1} S x, x \in G$.
That is $x^{-1} S\left(x^{-1}\right)^{-1}=T, x^{-1} \in G$.
which implies $T \sim S$.
Now let $S, T, U \in \mathbb{P}(G)$ such that $S \sim T, T \sim U$.
then $S=x T x^{-1}, x \in G$.

$$
T=y U y^{-1}, y \in G
$$

Therefore $S=x T x^{-1}$.

$$
\begin{aligned}
& =x y U y^{-1} x^{-1} \\
& =x y U(x y)^{-1}, x y \in G
\end{aligned}
$$

showing that $S \sim U$.
Hence the relation 'conjugate' is an equivalence relation.

3.4.4 Theorem:

Let G be a group. For any subset S of $G|C(S)|=[G: N(S)]$, where $N(S)=\left\{x \in G \mid x^{-1} S x=S\right\}$

Proof.

Given that G is a group and let $\mathbb{P}(G)$ be its power set.

We know that G acts as $\mathbb{P}(G)$ by the action 'conjugation', given by $x * S=\left\{x S x^{-1}: x \in S\right\}$ where $S \subset G$.
Define a relation \sim on $\mathbb{P}(G)$ as follows. For $S, T \in \mathbb{P}(G), S \sim T \Leftrightarrow$ $S=x T x^{-1}$ for some $x \in G$.

Clearly ' \sim ' is an equivalence relation and partitions $P(G)$ into equivalence classes.
$\mathbb{P}(G)=\bigcup C(S), S \subset G$ and the union is disjoint.
Now define a mapping $\sigma: C(S) \rightarrow \frac{G}{N(S)}$ by $\sigma\left(x S x^{-1}\right)=x N(S), x \in G$.
Clearly σ is one-one.
Infact if $\sigma\left(x S x^{-1}\right)=\sigma\left(y S y^{-1}\right)$, for any $x, y \in G$.

$$
\begin{aligned}
& \Rightarrow x N(S)=y N(S) \\
& \Rightarrow y^{-1} x N(S)=N(S) \\
& \Rightarrow y^{-1} x \in N(S) \\
& \Rightarrow y^{-1} x S\left(y^{-1} x\right)^{-1}=S \\
& \Rightarrow y S y^{-1}=x S x^{-1}
\end{aligned}
$$

Proving σ is one-one.
σ is onto.
For any $x N(S) \in \frac{G}{N(S)}$, there exists $x \in G$ and $x S x^{-1} \in C(S)$ such that $\sigma\left(x S x^{-1}\right)=x N(S)$ showing that σ is onto.
Therefore $|C(S)|=\left|\frac{G}{N(S)}\right|=[G: N(S)]$.
That is $|C(S)|=[G: N(S)]$.

3.4.5 Theorem.

Let G be a group and $x \in G$. Then.
(i) $C(x)=\{x\} \Leftrightarrow x \in Z(G)$, Clearly $x \in C(x)$.
(ii) $x \in Z(G) \Leftrightarrow N(x)=G$.
(iii) $x \notin Z(G) \Leftrightarrow N(x)$ is a proper subgroup of G.

Proof.

Given that G is a group and $x \in G$. We have $C(x)=\left\{a x a^{-1} / a \in G\right\}$.
(i) First suppose $C(x)=\{x\}$.

For any $a \in G$ we have $a x a^{-1}=x$. That is $a x=x a$ showing that $x \in Z(G)$.
Conversely suppose that $a \in Z(G)$.
Then $x a=a x$ for all $x \in G$.
That is $a=x a x^{-1}$ for all $x \in G$.
Now $C(x)=\left\{a x a^{-1} / a \in G\right\}$

$$
\begin{aligned}
& =\left\{x a a^{-1} / a \in G\right\} \\
& =\{x\}
\end{aligned}
$$

(ii) $x \in Z(G) \Leftrightarrow C(x)=\{x\}$

$$
\begin{aligned}
& \Leftrightarrow[G: N(x)]=|C(x)|=1 \\
& \Leftrightarrow N(x)=G
\end{aligned}
$$

(iii) $x \notin Z(G) \Leftrightarrow C(x) \neq\{x\}$

$$
\begin{aligned}
& \Leftrightarrow[G: N(x)]=|C(x)|>1 \\
& \Leftrightarrow N(x) \text { is a proper subgroup of } G \text {. }
\end{aligned}
$$

Hence the theorem.

3.4.6 Theorem

Let G be a finite group then

$$
|G|=|Z(G)|+\sum_{x \in C}[G: N(x)]
$$

where C contains exactly one element from each conjugate class with more than one element.

Proof.

Given that G is a finite group. We know that the relation conjugacy on G is
an equivalence relation and it partitions G into mutually disjoint equivalent classes. The equivalence class of an element $x \in G$ is $C(x)$, the conjugacy class of x.

$$
\text { Therefore } G=\bigcup_{x \in C^{\prime}} C(x)
$$

Where C^{\prime} contains exactly one element from each conjugate class.
Also we have $|C(x)|=[G: N(x)]$.
On separating those conjugation classes which contains exactly one element and those which contain more than one element and using the fact that $C(x)=\{x\} \Leftrightarrow x \in Z(G)$.

$$
\begin{equation*}
\text { We have } G=Z(G) \bigcup \bigcup_{x \in C} C(x) \tag{2}
\end{equation*}
$$

Where C contains exactly one element from each conjugate cases having more than one element.

The equation (2) is known as the class equation for group G.
Since G is finite,

$$
\begin{align*}
|G| & =|Z(G)|+\sum_{x \in C}|C(x)| . \\
& =|Z(G)|+\sum_{x \in C}[G: N(x)] . \tag{3}
\end{align*}
$$

The equation (3) is known as the class equation for finite group G.

3.4.7 Theorem.

Let G be a finite group of order p^{n}, where p is prime and $n>0$. Then
(i) G has a non trivial centre $Z(G)=Z$
(ii) $Z \cap N$ is non trivial for any non trivial normal subgroup N of G.
(iii) If H is a proper subgroup of G, then H is properly contained in $N(H)$; hence, if H is a subgroup of order p^{n-1}, then $H \triangleleft G$.

Proof.

Given that G is a group of order p^{n}.

The class equation of G is

$$
\begin{equation*}
|G|=p^{n}=|Z|+\sum_{x \in C}[G: N(x)] \tag{1}
\end{equation*}
$$

Where $Z=Z(G)$ and C is a subset of G exactly one element x from each conjugate class not contained in Z.

If $x \notin Z$ then $N(x)$ is a proper subgroup of G then by Lagrange's theorem, $|N(x)| /|G| \Rightarrow|N(x)| / p^{n}$

Since $N(x) \neq G,|N(x)|<p^{n}$, therefore $|N(x)|=p^{r}, r<n$.
$[G: N(x)]=\frac{|G|}{|N(x)|}=\frac{P^{n}}{p^{r}}=p^{n-r}$ \qquad
where $n-r \geq 1$.
$\Rightarrow p$ divides $[G: N(x)]$ because p divides right hand side of equation (2) for each $x \notin Z$.
$\Rightarrow p$ divides $\sum_{x \in C}[G: N(x)]$.
We have $p /|G|$ and $p / \sum_{x \in C}[G: N(x)]$.
$\Rightarrow p /|Z| \quad($ from $(1))$
$\Rightarrow|Z| \geq 2$
$\Rightarrow Z \neq\{e\}$
$\Rightarrow Z=Z(G)$ is non trivial.
(ii) We have from the class equation of G.
$G=Z \bigcup\left(\bigcup_{x \in C} C(x)\right) . \quad$ (disjoint)
Let N be any non trivial normal subgroup of G.
Then $N=G \bigcap N=\left(Z \bigcup\left(\bigcup_{x \in C} C(x)\right)\right) \bigcap N$.
$\Rightarrow N=(Z \cap N) \cup\left(\bigcup_{x \in C} C(x) \cup N\right)$
$\Rightarrow|N|=|Z \cup N|+\sum_{x \in C}^{x \in C}|C(x) \cap N|$
We now prove that for any $x \in C, C(x) \cap N=\phi$ or $C(x)$.
If $x \in N$ then $C(x) \subset N$

Since $x \in N$ then $g x=x g \quad \forall g \in G$.

$$
\Rightarrow g x g^{-1}=x \quad \forall g \in G
$$

$$
\text { But } \begin{aligned}
C(x) & =\left\{g x g^{-1} / g \in G\right\} \\
& =\{x\} .
\end{aligned}
$$

That is $g x g^{-1} \in C(x)$ then $g x g^{-1}=x \in N$ which imply $C(x) \subset N$.
And further note that $x \notin N$ then $a x a^{-1} \notin N \quad \forall a \in G$.

$$
\Rightarrow C(x) \cap N=\phi
$$

That is if $x \in N \Rightarrow C(x) \subset N$

$$
\text { and if } x \notin N \Rightarrow C(x) \cap N=\phi
$$

Hence for every $x \in C$
$C(x) \cap N=\phi$ or $C(x)$
$|C(x) \cap N|=0$ or $|C(x)|$
and $|C(x) \cap N|=0$ or $[G: N(x)]$
But $|c(x)|=[G: N(x)]$
$\Rightarrow \sum_{x \in C}|C(x) \cap N|=\sum_{x \in C}[G: N(x)]$
$\Rightarrow p / \sum_{x \in C}[G: N(x)] \quad$ (by (1))
$\Rightarrow p / \sum_{x \in C}|C(x) \cap N|$
Since N is a proper normal subgroup of G.
$\Rightarrow|N|=p^{r}$ for some $0<r<n$
$\Rightarrow p /|N|$
Then from (3), we have $p /|Z \cap N|$
$\Rightarrow|Z \cap N| \geq 2$
$\Rightarrow Z \cap N \neq\{e\}$
$\Rightarrow Z \cap N$ is nontrivial for any nontrivial normal subgroup N of G.
(iii) Now let H be a proper subgroup of G.

Let K be a maximal normal subgroup of G contained in H.
Then K is a proper normal subgroup of G and hence the quotient group $\frac{G}{K}$ os of order p^{r} where $0<r<n$.

Then by (1) of the theorem
$\frac{G}{K}$ has a nontrivial center say $\frac{L}{K}$
Clearly $K \triangleleft L$ and $K \neq L$
Now $\frac{L}{K} \triangleleft \frac{G}{K}$ implies $L \triangleleft G$.
(by correspondence theorem)
If L is contained in H that is $L \subset H$, then $K \subset L \subset H \subset G$ which implies $K \triangleleft L \triangleleft G$ which is a contradiction to the fact that K is a maximal normal subgroup of G. contained in H.

Hence L is not contained in H.
We now show that $L \subset N(H)$.
Let $h \in H, l \in L$. We have $\frac{L}{K}$ is the center of $\frac{G}{K}$.
Therefore the elements of $\frac{L}{K}$ and $\frac{G}{K}$ commute.
Hence $(h K)(l K)=(l K)(h K)$
$\Rightarrow h l K=l h K$
$\Rightarrow h^{-1} l^{-1} h l K=K$
$\Rightarrow h^{-1} l^{-1} h l \in K$
But $K \subset H$. Thus $h^{-1} l^{-1} h l \in H$
$\Rightarrow l^{-1} h l \in h H$
$\Rightarrow l^{-1} h l \in H$
$\Rightarrow h l \in l H$
$\Rightarrow H l \subset l H$
Similarly $l H \subset H l \forall l \in L$.

Therefore $l H=H l \quad \forall l \in L$.
$\Rightarrow l^{-1} H l=H \quad \forall l \in L$.
$\Rightarrow l \in N(H)$.
which gives that $L \subset N(H)$.
If $N(H)=H$ then $L \subset H$, again a contradiction to $L \not \subset H$.
Hence $H \neq N(H)$
$\Rightarrow H$ is properly contained in $N(H)$.
That is $H \subset N(H)$.
$H \subset N(H) \Rightarrow|H|<|N(H)|$ and $|H|$ divides $|N(H)|$ when G is finite.
If H is a proper subgroup of order p^{n-1} that is $|H|=p^{n-1}$ then $|N(H)|=p^{n}$.
$\Rightarrow N(H)=G$
$\Rightarrow x H x^{-1}=H \quad \forall x \in G$
$\Rightarrow H \triangleleft G$.

3.4.8 Corollary

Every group of order p^{2} is abelian, where p is a prime.

Proof.

Let G be a group of order p^{2}, where p is prime.
If possible assume that G is non abelian. Also by theorem 4.2.5, G has a nontrivial center $Z(G)=Z$ and $|Z| \neq 1$.

Now $|Z| /|G| \quad$ (by Lagranges theorem)
$\Rightarrow|Z| / p^{2}$
$\Rightarrow|Z|=p$ or $p^{2} . \quad(|Z|>1)$
If $|Z|=p^{2}$ then $Z=G$ and hence G will be abelian, which is a contradiction.
Therefore $|Z|=p$
Let $a \in G$ and $a \notin Z$.

Now $x \in Z \Rightarrow x a=a x$
$\Rightarrow x \in N(a)$
Thus $Z \subseteq N(a)$.
Also note that $Z \neq N(a)$
If $Z=N(a)$ then $a \in Z$, which is not possible.
$\Rightarrow|N(a)| / p^{2}$.
$\Rightarrow|N(a)|=p^{2}$ some $|Z|<|N(a)|$
$\Rightarrow N(a)=G$
$\Rightarrow a g=g a \quad \forall g \in G$
$\Rightarrow a \in Z$, which is a contradiction.
Hence G is abelian.

3.4.9 Remark.

For a fixed $g \in G$, we define $X_{g}=\{x \in G / g x=x\}$.

3.4.10 Burnside Theorem.

Let G be a finite group acting on a finite set X. Then the number k of orbits in X under G is $k=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|$

Proof.

Let G be a finite group acting on a finite set X.
Let * be the action of G on X that is
*: $G \times X \rightarrow X$ is the mapping satisfying

$$
\begin{aligned}
& a *(b * x)=(a b) * x \\
& e * x=x \quad \forall a, b \in G, x \in X .
\end{aligned}
$$

Let $S=\{(g, x) \in G \times X / g * x=x\}$
$=\{(g, x) \in G \times X / g x=x\}$
For any fixed $g \in G$, we have

$$
\begin{aligned}
X_{g} & =\{x \in X / g * x=x\} \\
& =\{x \in X / g x=x\}
\end{aligned}
$$

For any $x \in X$ we have $G_{x}=\{g \in G / g * x=x\}$

$$
=\{g \in G / g x=x\}
$$

Therefore for any fixed $x \in X$, the number of ordered pairs (g, x) in S is exactly equal to $\left|G_{x}\right|$

Thus $\sum_{g \in G}\left|X_{g}\right|=|S|=\sum_{x \in X}\left|G_{x}\right|$ \qquad
By theorem 3.3.7, we have
(i) $X=\bigcup_{x \in C} G x$, where C is a subset of X containing exactly one element from each orbit.
(ii) $|G x|=\left[G: G_{x}\right]=\frac{|G|}{\left|G_{x}\right|}$

Therefore $\sum_{x \in X}\left|G_{x}\right|=\sum_{x \in X} \frac{|G|}{|G x|}$
$=|G| \sum_{x \in X} \frac{1}{|G x|}$
$=|G| \sum_{a \in C} \sum_{x \in G a} \frac{1}{|G x|}$
$=|G|\left(\sum_{a \in C} \frac{1}{|G a|}+\frac{1}{|G a|}+\ldots \frac{1}{|G a|}\right) \quad(|G a|$ times $)$.
$=|G| \sum_{a \in C} \frac{|G a|}{|G a|}$
$=|G| \sum_{a \in C} 1$
$=|G| k$
where k is the number of distinct orbits of X under G.
From (1), $\sum_{g \in G}\left|X_{g}\right|=|G| k$
$\Rightarrow k=\frac{1}{|G|} \sum_{g \in G}\left|X_{g}\right|$
Hence the theorem.

3.4.11 Example

Let G be a group containing an element of finite order $n>1$ and exactly two conjugate classes, prove that $|G|=2$.

Sol.

Let $a \in G$ such that $a \neq e$ and $o(a)=n$. Consider the conjugate classes $\{e\}$ and $C(a)$ then $G=\{e\} \cup C(a)$.

Let $b \neq e$ be any other element of G. Then $b \in C(a) \Rightarrow b=g a g^{-1}$ for some $g \in G$
$\Rightarrow o(b)=o\left(g a g^{-1}\right)=o(a)$
$\Rightarrow o(b)=n$
Since $o(a)=n$
We shall show that n is a prime. Suppose $m \mid n$ then $n=m k$ for some integer
k. Consider the cyclic group G generated by a then $a^{n}=e \Rightarrow a^{m k}=e$
$\left(a^{k}\right)^{m}=e$
Let $b=a^{k}$ then $b^{m}=e$
$\Rightarrow o(b)=m$
But $b \in C(a) \Rightarrow o(b)=o(a)=n$
$\Rightarrow m=n$
Showing that n is prime.
We shall prove that $a^{2}=e$
Suppose $a^{2} \neq e$ then $a^{2} \in C(a)$
$\Rightarrow a^{2}=x a x^{-1}$ for some $x \in G$.
We now claim that $a^{2^{i}}=x^{i} a x^{-i}$
For $i=1$, we have $a^{2}=x a x^{-1}$
Showing that the result is true for $i=1$.
Now assume that the result is true for $i=k$
$a^{2^{k}}=x^{k} a x^{-k}$.
Consider $a^{2 k+1}=a^{2 k} .2=a^{2^{k}} a^{2 k}$

$$
\begin{aligned}
& =\left(x^{k} a x^{-k}\right)\left(x^{k} a x^{-k}\right) \\
& =x^{k} a^{2} x^{-k} \\
& =x^{k}\left(x a x^{-1}\right) x^{-k} \\
& =x^{k+1} a x^{-(k+1)}
\end{aligned}
$$

By induction, $a^{2^{i}}=x^{i} a x^{-i}$. for $i \geq 1$
On taking $i=n$, we have
$a^{2 n}=x^{n} a x^{-n} .=e a e=a$ since $x^{n}=e$
$\Rightarrow a^{2 n} \cdot a^{-1}=e$
$\Rightarrow a^{2^{n}}-1=e$
But $o(a)=n$ therefore $n / 2^{n}-1$
which is not possible since n is a prime.
Therefore $a^{2}=e \quad \forall a \in G$
$\Rightarrow G$ is abelian.
$C(a)=\left\{g a g^{-1} / g \in G\right\}=\{a\}$
Thus $G=\{e\} \cup\{a\}=\{e, a\}$
proving that $|G|=2$.

3.4.12 Example

Let H be a subgroup of a finite group G. Let $A, B \in P(G)$, the power set of G. Define A to be conjugate to B with respect to H. If $B=h A h^{-1}$ for some $h \in H$. Then
(i) Cojugacy defined in $P(G)$ is an equivalence relation.
(ii) If $C_{H}(A)$ is the equivalence class of $A \in P(G)$ (called the conjugate class of A with respect to H),

Then
$\left|C_{H}(A)\right|=[H: H \cap N(A)]$

Proof.

(i) The result is true by theorem 3.3.7 by taking $X=P(G)$ and H to be the group that acts on X by conjugation.
(ii) Let $\sigma: C_{H}(A) \rightarrow \frac{H}{H \cap N(A)}$ defined by $\sigma\left(h A h^{-1}\right)=h(H \cap N(A))$
σ is onto : Since for every $h(H \cap N(A))$ there exists $h \in H$ such that $\sigma\left(h A h^{-1}\right)=h(H \cap N(A))$
σ is one-one:
$\sigma\left(h_{1} A h_{1}^{-1}\right)=\sigma\left(h_{2} A h_{2}^{-1}\right)$
$\Rightarrow h_{1}(H \cap N(A))=h_{2}(H \cap N(A))$
$\Rightarrow H \cap N(A)=h_{1}^{-1} h_{2}(H \cap N(A))$
$\Rightarrow h_{1}^{-1} h_{2} \in N(A)$
$\Rightarrow h_{1}^{-1} h_{2} A=A h_{1}^{-1} h_{2}$
$\Rightarrow h_{1} A h_{1}^{-1}=h_{2} A h_{2}^{-1}$
$\Rightarrow \sigma$ is one-one.
Therefore σ is bijective.
$\left|C_{H}(A)\right|=\left|\frac{H}{H \cap N(A)}\right|=\frac{|H|}{|H \cap N(A)|}=[H: H \cap N(A)]$

3.5 Summary:

In section 3.2, we have defined the action of a group G on a set X and provided number of illustrations. Also we proved Cayley's theorem. In section 3.3 we have defined the notions of orbits and stabilizers of an element in a group G. Also we have defined the action of G on itself by conjugacy relation. In section 3.4, we have derived the class equation of a finite group and using this we established that every group of order p^{2} (p is a prime) is abelian. At the end of this section we have proved Burnside theorem.

3.6 Model Examination Questions.

(1). Find the number of conjugate classes of the element (13) in D_{4}.
(2). Determine the number of conjugate classes of the symmetric group of degree 3 and verify that the number of elements in each conjugate class is a divisor of the order of group.
(3). In S_{n}, find the number of r-cycles.

Using this, find the number of conjugates of the r-cycle (12...r) in S_{n}.
(4). Find all the conjugate classes in S_{4}.
(5) Let G be a finite group with a normal subgroup N such that $\left(|N|, \frac{|G|}{|N|}\right)=$ 1. Show that every element order dividing $|N|$ is contained in N.
(6) If G be a group of order 125 , then prove that there exists $a \neq e, a \in G$ such that $a x=x a$ for all $x \in G$.
(7) Show that every group of order 169 is abelian.
(8) Let G be a group, show that $Z(G)=\bigcup_{|C(x)|=1} C(x), x \in G$.

3.7 Glossary.

Action of a group, G-set, Orbit, Stabilizer, Conjugacy class.Class equation, Burnside theorem

LESSON-04

NORMAL SERIES AND SOLVABLE GROUPS

4.1 Introduction.

In this lesson we define normal and composition series of a group G. Moreover we establish the equivalence of composition series of a finite group(The Jordan-Holder theorem). Further we deduce the fundamental theorem of arithmetic as a consequence of Jordan-Holder theorem.

The class of groups which appears in the theory of polynomial equations is the class of solvable groups. In this lesson we also characterise solvable group. Especially the terminology of solvability comes from the correspondence between the groups and the polynomials which can be solvable by radicals. Here the solvability of polynomials means that there is an algebraic formula for the roots.

4.2 Definition: Normal Series.

Let G be a group. A sequence $\left(G_{0}, G_{1} \ldots G_{r}\right)$ of subgroups of a group G is called a normal series (or subnormal series) of G if

$$
\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{r-1} \subset G_{r}=G
$$

where G_{i-1} is a normal subgroup of $G_{i}, 1 \leq i \leq r$. The quotient groups $\frac{G_{i}}{G_{i-1}}$, $1 \leq i \leq r$ are called the factors of normal series.

4.2.1 Remark:

(i) For any group $G,\{e\}=G_{0} \subset G_{1}=G$ is trivially a normal series of G.
(ii) Any series of subgroups of an abelian group is a normal series.
(iii) $\{0\} \subset 20 Z \subset 10 Z \subset 5 Z \subset Z$ is a normal series of Z.

4.2.2 Definition: Composition Series :

A normal series $\left(G_{0}, G_{1} \ldots G_{r}\right)$ of a group G is said to be a composition series
of G if its factors $\frac{G_{i}}{G_{i-1}}, 1 \leq i \leq r$ are all simple groups.
The factors $\frac{G_{i}}{G_{i-1}}, 1 \leq i \leq r$ are called composition factors of G.

4.2.3 Remarks:

(i) $\frac{G_{i}}{G_{i-1}}$ is simple if and only if there are no normal subgroups between G_{i-1} and $G_{i}, 1 \leq i \leq r$ in the composition series of G.
(ii) For any simple group $G,\{e\}=G_{0} \subset G_{1}=G$ is the only composition series of G.

4.2.4 Theorem:

Every finite group has a composition series.

Proof.

Let G be a finite group.
We prove the theorem by using induction on the order of G.
If $|G|=1$ then $G=\{e\}$ and (G) is the only composition series of G without composition factors, proving the result in this case.

If G is a simple group, then its only normal subgroups are $G_{0}=\{e\}$ and $G_{1}=G$. Now we have

$$
\{e\}=G_{0} \subset G_{1}=G, G_{0} \triangleleft G, \frac{G}{G_{0}} \text { is simple. }
$$

Also note that $\left(G_{0}, G\right)$ is the only composition series of G proving the result in this case.

Now suppose that $|G|>1$ and G is not simple and further assume that the result is true for all groups of order less than $|G|$.

As G is not simple, it has at least one proper normal subgroup.
Let H be the maximal normal subgroup of G. Since $|H|<|G|$, by induction hypothesis, H has a composition series say
$\{e\}=H_{0} \subset H_{1} \subset H_{2} \subset \ldots \subset H_{r}=H$

Also we have $\frac{G}{H}$ is simple.
Therefore
$\{e\}=H_{0} \subset H_{1} \subset H_{2} \subset \ldots \subset H_{r}=H \subset G$ is a composition series for G.
Hence the theorem.

4.2.5 Example:

For the group S_{3}, we have

$$
\{e\} \subset\{e,(123),(132)\} \subset S_{3}
$$

is a composition series where

$$
S_{3}=\{e,(123),(132),(12),(23),(13)\}
$$

4.2.6 Example:

We know that the Dihedral group D_{4} is generated by σ and τ where $\sigma^{4}=e=\tau^{2}$ and $\tau \sigma=\sigma^{3} \tau$ here $\sigma=(1234), \tau=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2\end{array}\right)$

That is $D_{4}=\left\{e, \sigma, \sigma^{2}, \sigma^{3}, \tau, \sigma \tau, \sigma^{2} \tau, \sigma^{3} \tau\right\}$.
For this group D_{4},
$\{e\} \subset\left\{e, \sigma^{2}\right\} \subset\left\{e, \sigma, \sigma^{2}, \sigma^{3}\right\} \subset D_{4}$ is a composition series.
Also $\{e\} \subset<\sigma^{2}>\subset<\sigma^{2}, \tau>\subset D_{4}$ is another composition series for D_{4}.

4.2.7 Example:

We know that the Quaternion group Q is generated by a, b with the defining relations $a^{4}=b^{4}=e, b^{2}=a^{2}, b^{-1} a b=a^{3}$.

We can write Q in terms of matrices as follows

$$
\begin{array}{r}
Q=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & \sqrt{-1}
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\right. \\
\left.\left(\begin{array}{cc}
-\sqrt{-1} & 0 \\
0 & \sqrt{-1}
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -\sqrt{-1} \\
-\sqrt{-1} & 0
\end{array}\right)\right\}
\end{array}
$$

$$
\text { Here } e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), a=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & \sqrt{-1}
\end{array}\right), b=\left(\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right) .
$$

Clearly the Quaternion group Q is of order 8 and all of its subgroups are normal. Also nothe that the cyclic groups $\left[a^{2}\right]$ and $[a]$ are subgroups of order 2 and 4 respectively.

Further observe that

$$
\{e\} \subset\left[a^{2}\right] \subset[a] \subset Q
$$

is a normal series for Q since $\left[[a]:\left[a^{2}\right]\right]=2=[Q:[a]]$.
Also each factor of the series is isomorphic to the cyclic group of order 2 , which is simple.

Hence $\{e\} \subset\left[a^{2}\right] \subset[a] \subset Q$ is a composition series of Q.

4.2.8 Example:

$\{0\} \subset\{0,10\} \subset\{0,5,10,15\} \subset\{0,1,2, \ldots 19\}=\frac{Z}{(20)}$ is a normal series of $\frac{Z}{<20>}$ since $\frac{Z}{<20>}$ is an abelian group. Further the factors of this composition series are respectively isomorphic to cyclic groups of orders 2,2 and 5 , which are simple. Thus
$S=\left(G_{0}, G_{1}, G_{2}, G_{3}\right)$ is a composition series of $\frac{Z}{<20>}$ where $G_{0}=\{0\}$, $G_{1}=[10], G_{2}=[5], G_{3}=\frac{Z}{<20>}$.
Further note that $S^{\prime}=\left(G_{0}^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ is also a composition series of $\frac{Z}{<20>}$ where $G_{0}^{\prime}=[0], G_{1}^{\prime}=[10], G_{2}^{\prime}=[2], G_{3}^{\prime}=\frac{Z}{<20>}$. Here the composition factors of the series are respectively isomorphic to the cyclic groups of orders 2, 5 and 2 .

4.3 Definition: Equivalence of Normal Series

Two normal series $S=\left(G_{0}, G_{1}, G_{2} \ldots G_{r}\right)$ and $S^{\prime}=\left(G_{0}^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}, \ldots G_{r}^{\prime}\right)$ of G are siad to be equivalent, written $S \sim S^{\prime}$, if the factors of one series are
isomorphic to the factors of the other after some permutation; that is,

$$
\frac{G_{i}^{\prime}}{G_{i-1}^{\prime}} \simeq \frac{G_{\sigma(i)}}{G_{\sigma(i)-1}}, i=1,2, \ldots r
$$

for some $\sigma \in S_{r}$.

4.3.1 Example:

The normal (composition) series $S=\left(G_{0}, G_{1}, G_{2}, G_{3}\right)$ and $S^{\prime}=\left(G_{0}^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ of $\frac{Z}{<20>}$ of the example (4.3.8) are equivalent.
$\frac{G_{1}}{G_{0}} \simeq \frac{Z}{<2>}, \quad \frac{G_{2}}{G_{1}} \simeq \frac{Z}{<2>}, \quad \frac{G_{3}}{G_{2}} \simeq \frac{Z}{<5>}$ and $\frac{G_{1}^{\prime}}{G_{0}^{\prime}} \simeq \frac{Z}{<2>}, \quad \frac{G_{2}^{\prime}}{G_{1}^{\prime}} \simeq \frac{Z}{<5>}, \quad \frac{G_{3}^{\prime}}{G_{2}^{\prime}} \simeq \frac{Z}{<2>}$.
Now observe that $\frac{G_{i}^{\prime}}{G_{i-1}^{\prime}} \simeq \frac{G_{\sigma(i)}}{G_{\sigma(i)-1}}$,
where $\sigma=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right) \in S_{3}$.
Therefore we have $S \sim S^{\prime}$.

4.3.2 Lemma

The relation 'equivalence' of normal series on the set of all normal series of a group G is an equivalence relation.

Proof.

Let G be a group and \mathcal{S} be the set of all normal series of G.
Let $S=\left(G_{0}, G_{1}, G_{2} \ldots G_{r}\right) S^{\prime}=\left(G_{0}^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}, \ldots G_{r}^{\prime}\right), S^{\prime \prime}=\left(G_{0}^{\prime \prime}, G_{1}^{\prime \prime}, G_{2}^{\prime \prime}, \ldots G_{r}^{\prime \prime}\right)$
be elements in S.
We have ' \sim^{\prime} the equivalence of normal series on \mathcal{S} defined by $S \backsim S^{\prime}$ if

$$
\frac{G_{i}^{\prime}}{G_{i-1}^{\prime}} \simeq \frac{G_{\sigma(i)}}{G_{\sigma(i)-1}}, 1 \leq i \leq r \text { for some } \sigma \in S_{r} .
$$

(i) Let S be any normal series of G then clearly

$$
\frac{G_{i}}{G_{i-1}} \simeq \frac{G_{i}}{G_{i-1}}=\frac{G_{\sigma(i)}}{G_{\sigma(i)-1}} \text { where } \sigma(i)=i \forall i, 1 \leq i \leq r .
$$

Thus $S \sim S \forall S \in \mathcal{S}$ and hence \sim is reflexive.
(ii) Now let $S \sim S^{\prime}$ that is

$$
\frac{G_{i}^{\prime}}{G_{i-1}^{\prime}} \simeq \frac{G_{\sigma(i)}}{G_{\sigma(i)-1}}, 1 \leq i \leq r \text { for some } \sigma \in S_{r} .
$$

From this we write

$$
\frac{G_{j}}{G_{j-1}} \simeq \frac{G_{\sigma-1(j)}^{\prime}}{G_{\sigma-1(j)-1}^{\prime}}, 1 \leq j \leq r
$$

where $\sigma(i)=j \Leftrightarrow \sigma^{-1}(j)=i, \sigma \in S_{r}$.
Showing that ' \sim ' is symmetric.
(iii) Now let $S \sim S^{\prime}, S^{\prime} \sim S^{\prime \prime}$.

That is $\frac{G_{i}^{\prime}}{G_{i-1}^{\prime}} \simeq \frac{G_{\sigma(i)}}{G_{\sigma(i)-1}}$,
and $\frac{G_{i}^{\prime \prime}}{G_{i-1}^{\prime}} \simeq \frac{G_{\tau(i)}^{\prime}}{G_{\tau(i)-1}^{\prime}}, 1 \leq i \leq r$ for some $\sigma, \tau \in S_{r}$.
Now $\frac{G_{i}^{\prime \prime}}{G_{i-1}^{\prime}} \simeq \frac{G_{\tau(i)}^{\prime}}{G_{\tau(i)-1}^{\prime}} \simeq \frac{G_{\sigma(\tau(i))}}{G_{\sigma(\tau(i))-1}}=\frac{G_{(\sigma \tau) i}}{G_{(\sigma \tau) i-1}}$
where $\sigma \tau \in S_{r}$, which proves that $S \sim S^{\prime \prime}$.
Therefore ' \sim ' is transitive.
Hence ' \sim ' is an equivalence relation on \mathcal{S}, which completes the proof.
The equivalence of composition series as proved in the example 5.2.1 is not a surprising result. More generally we have the following result, in case of finite groups.

4.3.3 Theorem (Jordan-Holder theorem)

Any two composition series of a finite group are equivalent.

Proof.

Let G be a finite group.
Then G has a composition series. We prove the theorem by using induction on $|G|$. Suppose the theorem is true for all groups of order less than $|G|$.

Now consider any two composition series of G say

$$
\begin{align*}
& S_{1}:\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{r}=G \tag{1}\\
& S_{2}:\{e\}=H_{0} \subset H_{1} \subset H_{2} \subset \ldots \subset H_{s}=G \tag{2}
\end{align*}
$$

Now consider two cases $G_{r-1}=H_{r-1}$ or $G_{r-1} \neq H_{r-1}$
Case(i) First let $G_{r-1}=H_{r-1}$ then

$$
\begin{aligned}
& S_{1}^{\prime}:\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{r-1} \\
& S_{2}^{\prime}:\{e\}=H_{0} \subset H_{1} \subset H_{2} \subset \ldots \subset H_{r-1}
\end{aligned}
$$

That is $S_{1}^{\prime}, S_{2}^{\prime}$ are obtained from S_{1}, S_{2} after removing G from the series S_{1} and S_{2}.

Now $S_{1}^{\prime}, S_{2}^{\prime}$ are composition series for G_{r-1}.
Since $\left|G_{r-1}\right|<|G|$, we have by induction hypothesis $S_{1}^{\prime} \sim S_{2}^{\prime}$. This implies $r-1=s-1$ from which we get $r=s$ and hence the composition factors of S_{1}^{\prime} are isomorphic to the composition factors of S_{2}^{\prime} in some order.

In S_{1} and S_{2}, we have $r=s$ and $r^{\text {th }}$ composition factor in S_{1} and S_{2} is $\frac{G}{G_{r-1}}$ since $G_{r-1}=H_{r-1}$.

Clearly the $r^{\text {th }}$ composition factors of S_{1} and S_{2} are isomorphic since every group is isomorphic to itself. Therefore the composition factors of S_{1} are isomorphic to the composition factors of S_{2} in some order as the first $r-1$ composition factors of S_{1} and S_{2} are the composition factors of $S_{1}^{\prime}, S_{2}^{\prime}$ and $r^{\text {th }}$ composition factor of S_{1} and S_{2} is $\frac{G}{G_{r-1}}$.

Hence $S_{1} \sim S_{2}$ in this case.
Case(ii) Let $G_{r-1} \neq H_{s-1}$, that is G_{r-1} and H_{s-1} are distinct maximal normal subgroups of G.

Let $K=G_{r-1} \cap H_{s-1}$. Therefore K is a maximal normal subgroup of G_{r-1} and also of H_{s-1} (If H, K are different maximal normal subgroups of G, then $H \cap K$ is a maximal normal subgroup of H and also of K)

Since $|K|<\left|G_{r-1}\right|<G$, by induction hypothesis, K has a composition series say $\{e\}=K_{0} \subset K_{1} \subset \ldots \subset K_{t}=K$.

Now this gives two more composition series of G.

$$
\begin{align*}
& S_{3}:\{e\}=K_{0} \subset K_{1} \subset \ldots \subset K \subset G_{r-1} \subset G_{r}=G- \tag{3}\\
& S_{4}:\{e\}=K_{0} \subset K_{1} \subset \ldots \subset K \subset H_{s-1} \subset H_{s}=G \tag{4}
\end{align*}
$$

Also $G_{r-1} H_{s-1}$ is a normal subgroup of G containing H_{s-1}. Since G_{r-1}, H_{s-1} are normal subgroups of G we must have $G_{r-1} H_{s-1}=G$.

Therefore by second isomorphism theorm

$$
\frac{H_{s-1}}{G_{r-1} \cap H_{s-1}} \simeq \frac{G_{r-1} H_{s-1}}{G_{r-1}}
$$

That is $\frac{H_{s-1}}{K} \simeq \frac{G}{G_{r-1}}$
and $\frac{G_{r-1}}{G_{r-1} \cap H_{s-1}} \simeq \frac{G_{r-1} H_{s-1}}{H_{s-1}}$.
That is $\frac{G_{r-1}}{K} \simeq \frac{G}{H_{s-1}}$.
Also recall that $\frac{K_{i}}{K_{i-1}} \simeq \frac{K_{i}}{K_{i-1}}$ since $S \sim S$.
and $\frac{G_{r-1}}{K_{t}}=\frac{G_{r-1}}{K} \simeq \frac{G}{H_{s-1}}=\frac{G_{r}}{H_{s-1}}$
and $\frac{G_{r}}{G_{r-1}}=\frac{G}{G_{r-1}} \simeq \frac{H_{s-1}}{K}=\frac{H_{s-1}}{K_{t}}$.
This shows that the composition factors of S_{3} and S_{4} are isomorphic in some order. Therefore $S_{3} \sim S_{4}$.

Also by case (i) $S_{1} \sim S_{3}$ and $S_{2} \sim S_{4}$.
Note that
$r=$ The number of composition factors of S_{1}.
$=$ The number of composition factors of S_{3}.
$=$ The number of composition factors of S_{4}.
$=$ The number of composition factors of S_{2}.

$$
=s
$$

we have $S_{1} \sim S_{3}$ and $S_{3} \sim S_{4}$.
Also $S_{4} \sim S_{2}$
Thus we have $S_{3} \sim S_{2}$ (since ${ }^{\prime} \sim^{\prime}$ is transitive)

Now again $S_{1} \sim S_{3}, S_{3} \sim S_{2}$ implies $S_{1} \sim S_{2}$.
Proving that any two composition series of a finite group G are equivalent. Hence the theorem.

4.3.4 Example:

An abelian group G has a composition series if and only if G is finite.

Proof.

Let G be an abelian group.
If G is finite, then it has a composition series, since every finite group has a composition series. Conversely suppose that G has a composition series say

$$
\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{r-1} \subset G_{r}=G
$$

Since G is abelian, all the composition factors $\frac{G_{i}}{G_{i-1}}(1 \leq i \leq r)$. are abelian and simple.
we now show that $\frac{G_{i}}{G_{i-1}}$ is a cyclic group of prime order $p_{i}(1 \leq i \leq r)$. If $\frac{G_{i}}{G_{i-1}}$ has a proper subgroup, then it is a proper normal subgroup of $\frac{G_{i}}{G_{i-1}}$ since $\frac{G_{i}}{G_{i-1}}$ is abelian.
which contradicts the fact that $\frac{G_{i}}{G_{i-1}}$ is simple. Thus $\frac{G_{i}}{G_{i-1}}$ has no proper subgroups.

Also we know that any non trivial simple group is cyclic and is of prime order.

Therefore each quotient group $\frac{G_{i}}{G_{i-1}}(1 \leq i \leq r)$ is cycle and is of prime order p_{i} (say) for $1 \leq i \leq r$.
Now $\prod_{i=1}^{r} p_{i}=\prod_{i=1}^{r}\left|\frac{G_{i}}{G_{i-1}}\right|$

$$
\begin{aligned}
& =\frac{\left|G_{1}\right|}{G_{0}} \frac{\left|G_{2}\right|}{\left|G_{1}\right|} \frac{\left|G_{3}\right|}{\left|G_{2}\right|} \cdots \frac{\left|G_{r-1}\right|}{\left|G_{r-2}\right|} \frac{\left|G_{r}\right|}{\left|G_{r-1}\right|} \\
& =\frac{\left|G_{r}\right|}{\left|G_{0}\right|}=|G|
\end{aligned}
$$

Thus $|G|=p_{1} p_{2} \ldots p_{r}$
proving that G is a finite group.
(Further note that the composition factors of a finite abelian group G are determined by the prime factors of $|G|$).

Hence the theorem.

4.3.5 Example

If a cyclic group has exactly one composition series, then it is a p-group.
Proof.
Let G be a cyclic group of order $p_{1} p_{2} \ldots p_{r}$ where $p_{1} p_{2} \ldots p_{r}$ are primes not necessarily distinct.

Let $G=[a]$.
But we know that every finite cyclic group G has exactly one subgroup of order d where d is a divisor of order of G, namely $|G|$.

Thus G has a unique subgroup G_{i} of order $p_{1} p_{2} \ldots p_{i}$ namely
$G_{i}=\left[a^{p_{i+1} p_{i+2} \ldots p_{r}}\right]$ for $i=1,2, \ldots r-1$
More explicitly

$$
\begin{aligned}
& G_{1}=\left[a^{p_{2} p_{3} \ldots p_{r}}\right] \\
& G_{2}=\left[a^{p_{3} p_{4} \ldots p_{r}}\right] \\
& \vdots \\
& G_{r-1}=\left[a^{p_{r}}\right] \\
& \text { and } G_{r}=G .
\end{aligned}
$$

As a convention, we have $G_{0}=\{e\}$
Thus we have a composition series

$$
\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots G_{r-1} \subset G_{r}=G
$$

such that $\left|\frac{G_{i}}{G_{i-1}}\right|=p_{i}$ for $i=1,2 \ldots r$.
Also every permutation of the prime factors of $|G|$ determines a composition
series.
But it is given that G has a unique composition series.
Thus this is possible if and only if $p_{1}=p_{2}=\ldots=p_{r}$
Therefore $|G|=p^{r}$, showing that G is $p-$ group.
4.3.6 Example Let G be a group of order p^{n}, p is a prime. Then G has a composition series such that all its composition factors are of order p.

Proof.
We have $|G|=p^{n}$, where p is prime.
Since G is finite, G has a composition series

$$
\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{r-1} \subset G_{r}=G
$$

where $\left|G_{i}\right|$ is a power of $p, 1 \leq i \leq r$.
Therefore any composition factor $\frac{G_{i}}{G_{i-1}}$ is of order p^{k} for some $k>0$ and will have a non trivial center since a group of prime power order has a non trivial center.
As $\frac{G_{i}}{G_{i-1}}$ is simple, its center must be the group $\frac{G_{i}}{G_{i-1}}$ which implies $\frac{G_{i}}{G_{i-1}}$ is abelian.

Thus each composition factor of G is simple abelian and hence is a group of order p.

Hence the theorem.

4.3.7 Example

Give an example of two non isomorphic finite groups G which have isomorphic composition series.

Proof.
Consider the groups S_{3} and $\frac{Z}{<6>}$
Clearly these two are not isomorphic since S_{3} is not cyclic but $\frac{Z}{<6>}$ is cyclic

We know that

$$
S_{3}=\{e,(123),(132),(12),(13),(23)\}
$$

write $N=\{e,(123)(132)\}$
Now
$\{e\} \subset N \subset S_{3}$ is a composition series of G. Let $H=\{0,2,4\}$
Now $\frac{N}{\{e\}} \simeq \frac{Z}{(3)} \simeq \frac{H}{\{0\}}$.
and $\frac{S_{3}}{N} \simeq \frac{Z}{(2)} \simeq \frac{Z /(6)}{H}$.
Hence the result.

4.3.8 Example

The Jordan-Holder theorem implies the fundamental theorem of arithmetic.

Proof.

The fundamental theorem of arithmetic states that if n is an integer such that $n>1$ then $n=p_{1} p_{2} \ldots p_{r}$ where $p_{1}, p_{2}, \ldots p_{r}$ are primes (not necessarily distinct). Further this factorization is unique in the sense that if $n=q_{1} q_{2} \ldots q_{s}$ where $q_{1}, q_{2}, \ldots q_{s}$ are primes then $r=s$ and the p_{i} 's are just the q_{i} 's rearranged (if necessary).

Let G be a cyclic group of order n. Suppose that n has two factorisations into primes say $n=p_{1} p_{2} \ldots p_{r}$ and $n=q_{1} q_{2} \ldots q_{s}$. Then G has a unique subgroup of order $n=p_{1} p_{2} \ldots p_{i}, 1 \leq i \leq r$.

Thus
$\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{r-1} \subset G_{r}=G$ is a composition series of G and the factors $\frac{G_{i}}{G_{i-1}}$ are cyclic groups of order $p_{i}(1 \leq i \leq r)$.
Similarly G has a composition series
$\{e\}=G_{0}^{\prime} \subset G_{1}^{\prime} \subset G_{2}^{\prime} \subset \ldots \subset G_{s}^{\prime}=G$ whose composition factors are cyclic groups of order $q_{i}(1 \leq i \leq s)$.

But from the Jordan-Holder theorem, we know that any two composition series of finite groups are equivalent.

Therefore, we have $r=s$ and the composition factors $\frac{G_{i}}{G_{i-1}}$ are isomorphic to the composition factors $\frac{G_{i}^{\prime}}{G_{i-1}^{\prime}}$ in some order.
Thus we have $r=s$ and $p_{i}=q_{i}$ (if hence we reorder $q_{i}^{\prime} s$)
Hence the result.

4.4 Derived group:

Let G be a group. For any $a, b \in G a b a^{-1} b^{-1}$ is called a commutator in G. The subgroup of G generated by the set S of all commutators in G is called the commutator subgroup of G or the derived group of G. It is denoted by G^{\prime}.
If $S=\left\{a b a^{-1} b^{-1} / a, b \in G\right\}$.
Then $G^{-1}=[S]$.
$=$ the set of all possible finite products of elements of S.
$=\left\{x_{1} x_{2} \ldots x_{n} / x_{i} \in S, n \geq 1\right\}$

4.4.1 Remark:

Let G be a group and G^{\prime} be the derived group of G. Then we have the following.
(i) $G^{\prime} \triangleleft G$.
(ii) G / G^{\prime} is a abelian.
(iii) If $H \triangleleft G$ then G / H is abelian if and only if $G^{\prime} \subset H$.
(iv) If G is abelian then $G^{\prime}=\{e\}$ where e is the identity of G.

4.4.2 Definition: $n^{\text {th }}$ Derived group of G

Let n be any positive integer. Then the $n^{\text {th }}$ derived group of a group G is denoted by $G^{(n)}$ and is defined as follows.
$G^{(1)}=G^{\prime}, G^{(n)}=\left(G^{(n-1)}\right)^{\prime}, n>1$.
Clearly $G^{(n)} \triangleleft G^{(n-1)}$ and $\frac{G^{(n-1)}}{G^{(n)}}$ is abelian.
(Inview of the remark 6.2.1).

4.5 definition: Solvable Group.

A group G is said to be solvable if there exists a positive integer k such that $G^{(k)}=\{e\}$.

4.5.1 Theorem:

Every abelian group is solvable
Proof.
Let G be an abelian group.
Let S be the set of all commutators in G that is

$$
\begin{aligned}
S & =\left\{a b a^{-1} b^{-1} / a, b \in G\right\} . \\
& =\{e\}
\end{aligned}
$$

since G is abelian.
Now $G^{\prime}=$ the derived group of G.

$$
=[S] .
$$

$=$ The smallest subgroup of G generated by S.
$=\{e\}$.
This implies $G^{\prime}=\{e\}$.
Proving that $G^{(1)}=G^{\prime}=\{e\}$.
Hence the abelian group G is solvable.

4.5.2 Theorem

Let G be a group G. Then every subgroup of G and every homomorphic image of G are solvable. Conversely if N is a normal subgroup of G such that N and $\frac{G}{N}$ are solvable then G is solvable.

Proof.

Let G be a solvable group.
Therefore $G^{(k)}=\{e\}$ for some positive integer k.
(i) Let H be any subgroup of G

Also let $S=\left\{a b a^{-1} b^{-1} / a, b \in H\right\}$.
and $\bar{S}=\left\{a b a^{-1} b^{-1} / a, b \in G\right\}$ be the set of commutators in H and G respectively.
Clearly $S \subset \bar{S}$ which implies $S \subset[\bar{S}]$.
Therefore $H^{\prime} \subset G^{\prime}$.
That is $H^{(1)} \subset G^{(1)}$.
Which means that if H is a subgroup of G then the derived group $H^{(1)}$ is a subgroup of $G^{(1)}$.

Now assume that $H^{(i)} \subset G^{(i)}$ for some positive integer i.
Therefore $H^{(i)^{\prime}} \subset G^{(i)^{\prime}}$ which gives $H^{(i+1)} \subset G^{(i+1)}$.
Hence by the principle of mathematical induction, it follows that $H^{(n)} \subset G^{(n)}$ for any positive integer n.
Now we have $H^{(k)} \subset G^{(k)}=\{e\}$.
Proving that every subgroup of a solvable group is solvable.
(ii) Now let $\phi: G \rightarrow K$ be an epimorphism. That is ϕ is onto homomorphism.
$K=\phi(G)$, the homomorphic image of G, is a group.
Let $A=\left\{a b a^{-1} b^{-1} / a, b \in G\right\}$ and $\bar{A}=\left\{x y x^{-1} y^{-1} / x, y \in \phi(G)\right\}$.
Now for any $a, b \in G$ and using the fact that ϕ is a homomorphism, we have

$$
\begin{aligned}
\phi\left(a b a^{-1} b^{-1}\right) & =\phi(a) \phi(b) \phi\left(a^{-1}\right) \phi\left(b^{-1}\right) \\
& =\phi(a) \phi(b) \phi(a)^{-1} \phi(b)^{-1}
\end{aligned}
$$

Proving that the image of commutator in G is a commutator in $\phi(G)$.
Now $\phi(A)=\left\{\phi\left(a b a^{-1} b^{-1}\right) / a, b \in G\right\}$

$$
\begin{aligned}
& =\left\{\phi(a) \phi(b) \phi\left(a^{-1}\right) \phi\left(b^{-1}\right) / a, b \in G\right\} \\
& =\bar{A}
\end{aligned}
$$

Since ϕ is surjective.
Further

$$
\begin{aligned}
\phi\left(G^{\prime}\right) & =\phi([A]) . \\
& =\left\{\phi\left(x_{1} x_{2} \ldots x_{n}\right) / x_{i} \in A, n \geq 1\right\} \\
& =\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right), \ldots \phi\left(x_{n}\right) / x_{i} \in A, n \geq 1\right\} . \\
& =\left\{y_{1} y_{2} \ldots y_{n} / y_{i} \in \bar{A}, n \geq 1\right\} . \\
& =[\bar{A}]=(\phi(G))^{\prime} .
\end{aligned}
$$

Proving that $\phi\left(G^{(1)}\right)=(\phi(G))^{(1)}$.
Now assume that $\phi\left(G^{(m)}\right)=(\phi(G))^{(m)}$ for some natural number m.
Now $\phi\left(G^{(m+1)}\right)=\phi\left(\left(G^{(m)}\right)^{\prime}\right)$

$$
\begin{aligned}
& =\left(\phi\left(G^{(m)}\right)\right)^{\prime} \\
& =\left(\phi(G)^{(m)}\right)^{\prime} \\
& =(\phi(G))^{m+1} .
\end{aligned}
$$

Therefore by the principle of mathematical induction, we have
$\phi\left(G^{(n)}\right)=(\phi(G))^{(n)}$ for any $n \geq 1$.
As G is solvable,
$(\phi(G))^{k}=\phi\left(G^{(k)}\right)=\phi(\{e\})=\left\{e^{\prime}\right\}$
where e^{\prime} is the identity of $\phi(G)$.
Proving that $\phi(G)$ is solvable which establishes that the homomorphic image of a solvable group is solvable.
Conversely let $N \triangleleft G$ such that N and $\frac{G}{N}$ are solvable.

Then there exists positive integers k, l such that $N^{(k)}=\{e\}$ and $\left(\frac{G}{N}\right)^{(l)}=\{\bar{e}\}$ where \bar{e} is the identity of $\frac{G}{N}$ namely N.
Let $\phi: G \rightarrow \frac{G}{N}$ be the canonical homomorphism.
That is $\phi(x)=N x$.
Clearly ϕ is surjective.
That is $\frac{G}{N}$ is the homomorphic image of G under $\phi \quad\left(\right.$ i.e $\left.\phi(G)=\frac{G}{N}\right)$.
Now for any natural number n,

$$
\phi\left(G^{(n)}\right)=(\phi(G))^{(n)} .
$$

Hence $\phi\left(G^{(l)}\right)=(\phi(G))^{(l)}$

$$
=\left(\frac{G}{N}\right)^{(l)}=\{\mathrm{N}\} .
$$

which implies $G^{(l)} \subset \operatorname{ker} \phi$ that is $G^{(l)} \subset N$.
From which we have $\phi\left(G^{(l)}\right)^{(k)} \subset N^{(k)}$
Therefore $\left(G^{(l+k)}\right) \subset\{e\}$
Thus we have $G^{(l+k)}=\{e\}$ proving that G is solvable.
In the following theorem, we characterise the solvable groups.

4.5.3 Theorem

A group G is solvable if and only if G has a normal series with abelian factors. Further a finite group is solvable if and only if its composition factors are cyclic groups of prime orders.

Proof
Let G be a group. We know that the derived group G^{\prime} of G is a normal subgroup of G and is abelian.

Also for any natural number n, we define $n^{\text {th }}$ derived group $G^{(n)}$ of a group G as follows
$G^{(1)}=G^{\prime}, G^{(n)}=\left(G^{(n-1)}\right)^{\prime}$ for $n>1$.

Also as a convention we get $G^{(0)}=G$.
Now $G^{(n)} \triangleleft G^{(n-1)}$ and $\frac{G^{(n-1)}}{G^{(n)}}$ is abelian.
(i) First suppose that G is solvable.

Then $G^{(k)}=\{e\}$ for some natural number k.
Now
$\{e\}=G^{(k)} \triangleleft G^{(k-1)} \triangleleft G^{(k-1)} \triangleleft \ldots \triangleleft G^{(1)} \triangleleft G^{(0)}=G$ is a normal series of G and the factors $\frac{G^{(i-1)}}{G^{(i)}}$ are abelian for $i=1,2 \ldots k$

Thus G has a normal series with abelian factors.
Conversely suppose that G has a normal series

$$
\{e\}=H_{0} \subset H_{1} \subset H_{2} \subset \ldots \subset H_{r-1} \subset H_{r}=G
$$

such that $\frac{H^{(i)}}{H^{(i-1)}}$ is abelian for $1 \leq i \leq r$.
For any $a, b \in H_{i}$

$$
\begin{aligned}
\left(a b a^{-1} b^{-1}\right) H_{i-1} & =\left(a H_{i-1}\right)\left(b H_{i-1}\right)\left(a^{-1} H_{i-1}\right)\left(b^{-1} H_{i-1}\right) . \\
& =\left(a H_{i-1}\right)\left(b H_{i-1}\right)\left(a H_{i-1}\right)^{-1}\left(b H_{i-1}\right)^{-1} . \\
& =H_{i-1} .
\end{aligned}
$$

Since $\frac{H_{i}}{H_{i-1}}$ is abelian.
Therefore we have $a b a^{-1} b^{-1} \in H_{i-1}$ from which we get $H_{i}^{\prime} \subset H_{i-1}$ for $1 \leq i \leq r$.
Now $G^{\prime}=H_{r}{ }^{\prime} \subset H_{r-1}$.
Thus by induction we have $G^{(i)} \subset H_{r-i}$ for $1 \leq i \leq r$.
For $i=r$, we get $G^{(r)} \subset H_{0}=\{e\}$
Hence $G^{(r)}=\{e\}$ proving that G is solvable.
(ii) Now assume that G is a finite group.

Suppose that G is a solvable group. By part (i) G has a normal series. $\{e\}=H_{0} \subset H_{1} \subset H_{2} \subset \ldots \subset H_{r-1} \subset H_{r}=G$ where each factor $\frac{H_{i}}{H_{i-1}}$,
$1 \leq i \leq r$ is abelian.
Clearly each $\frac{H_{i}}{H_{i-1}}$ is finite and H_{i-1} is the identity of $\frac{H_{i}}{H_{i-1}}$ and since each finite group has a composition series.
In particular $\frac{H_{i}}{H_{i-1}}$ has a composition series.

$$
H_{i-1}=\frac{K_{0}}{H_{i-1}} \subset \frac{K_{1}}{H_{i-1}} \subset \frac{K_{2}}{H_{i-1}} \subset \ldots \subset \frac{K_{n}}{H_{i-1}}=\frac{H_{i}}{H_{i-1}} .
$$

and the composition factors $\frac{K_{j} / H_{i-1}}{K_{j-1} / H_{i-1}}$ are simple.
Further these factors are abelian since $\frac{H_{i}}{H_{i-1}}$ is abelian. Also we know that every simple abelian group is of prime order and hence cyclic.
Therefore $\frac{K_{j} / H_{i-1}}{K_{j-1} / H_{i-1}}$ is of prime order and thus cyclic, from which it follows that $\frac{K_{j}}{K_{j-1}}, 1 \leq j \leq n$ is of prime order and cyclic.
Further $\frac{K_{j-1}}{H_{i-1}} \triangleleft \frac{K_{j}}{H_{i-1}}$ imply $K_{j-1} \triangleleft K_{j}$ for $1 \leq j \leq n$.
Thus corresponding to the composition series of $\frac{H_{i}}{H_{i-1}}$, we get

$$
H_{i-1}=K_{0} \triangleleft K_{1} \triangleleft K_{2} \triangleleft \ldots \triangleleft K_{n}=H_{i}
$$

where $K_{j-1} \triangleleft K_{j}$ and $\frac{K_{j}}{K_{j-1}}$ is of prime order and cyclic.
Now, on inserting the corresponding subgroups of H_{i} between H_{i-1} and H_{i} $(1 \leq i \leq r)$ in the normal series of G, we get a composition series of G in which each composition factor is a cyclic group of prime order.

Conversely suppose G has a composition series
$\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{r}=G$
such that each of its composition factors $\frac{G_{i}}{G_{i-1}}, 1 \leq i \leq r$ is cyclic of prime order. As each composition series is a normal series and every cyclic group is abelian, we have a normal series for the group G and each factor of this series is abelian.

Therefore G is solvable by the first part. Hence the theorem.

4.5.4 Example:

The symmetric group S_{3} is solvable.

Proof.

We know the symmetric group
$S_{3}=\left\{e, a, a^{2}, b, a b, a^{2} b\right\}$
with the defining relation $a^{3}=e=b^{2}, b a=a^{2} b$
Clearly $N=[a]=\left\{e, a, a^{2}\right\}$ is a cyclic subgroup of S_{3} of order 3.
Now we have $\{e\} \subset N \subset S_{3}$
Clearly $\{e\} \triangleleft N$ and since index of N in S_{3} in 2 we have $N \triangleleft S_{3}$.
Further $\frac{N}{\{e\}}, \frac{S_{3}}{N}$ are isomorphic to $\frac{Z}{<3>}$ and $\frac{Z}{<2>}$ respectively.
Thus S_{3} has a normal series with abelian factors and hence S_{3} is solvable (in view of theorem 6.3.3)

4.5.5 Example:

The dihedral group D_{n} is solvable.

Proof.

We know that the dihedral group D_{n} is of order $2 n$ generated by two elements σ, τ satisfying $\sigma^{n}=e=\tau^{2}$ and $\tau \sigma=\sigma^{n-1} \tau$ where $\sigma=(12 \ldots n)$ and $\tau=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ 1 & n & \ldots & 2\end{array}\right)$
Now
$\{e\} \subset K=<\sigma>=\left\{e, \sigma, \sigma^{2}, \ldots \sigma^{n-1}\right\} \subset D_{n}$
is a normal series for D_{n} and $\left[D_{n}: K\right]=2$, hence $K \triangleleft D_{n}$.
Further note that the factors in the above series $\frac{K}{\{e\}}, \frac{D_{n}}{K}$ are cyclic groups of orders n and 2 respectively.

Therefore D_{n} has normal series with abelian factors, proving that D_{n} is solv-
able.

4.5.6 Example:

A group of prime power order is solvable.

Sol.

Let G be a group of order p^{n} where p is a prime then G has composition series such that all its composition factors are of order p. Since a group of prime order is cyclic, G has a composition series such that all its composition factors are cyclic groups of prime order.

Thus G is solvable.

4.5.7 Example:

If M is a minimal normal subgroup of a finite solvable group G then M is a cyclic group of order p.

Sol.

Given that G is a finite solvable group. Therefore G has a composition series

$$
\{e\}=G_{0} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{n}=G
$$

whose composition factors are cyclic groups of prime orders. Since M is the minimal normal subgroup of G we must have $G_{1}=M$ in the composition series of G. Then the composition factor $\frac{M}{\{e\}}=M$ is a cyclic group of order p.

Hence the result.

4.5.8 Example:

A simple solvable group is cyclic.

Proof.

Let G be a simple solvable group then $\{e\} \subset G$ is the only normal series and its only factor $\frac{G}{\{e\}}=G$ is abelian thus G is a simple abelian group and this
implies G is of prime order.
Hence G is cyclic.

4.5.9 Example:

Let A, B are groups then $A \times B$ is solvable if and only if both A, B are solvable.

Proof.

Given that A, B are groups. Then $A \times B$ is a group under coordinate wise binary operation namely

$$
(a, b) \cdot(c, d)=(a c, b d) \text { for all }(a, b),(c, d) \in A \times B
$$

If e_{1}, e_{2} are the identities of A, B then $\left(e_{1}, e_{2}\right)$ is the identity of $A \times B$ and the inverse of (a, b) is denoted by $(a, b)^{-1}$ and is given by $(a, b)^{-1}=\left(a^{-1}, b^{-1}\right)$.

This $A \times B$ is called as the direct product of groups A and B.
First we prove the following results.
(i) $\left\{e_{1}\right\} \times B \triangleleft A \times B$

$$
A \times\left\{e_{2}\right\} \triangleleft A \times B
$$

(ii) $\left\{e_{1}\right\} \times B \simeq B$

$$
A \times\left\{e_{2}\right\} \simeq A
$$

$$
\frac{A \times B}{\left\{e_{1}\right\} \times B} \simeq A \text { and } \frac{A \times B}{A \times\left\{e_{2}\right\}} \simeq B
$$

Proof of (i) Now define a map

$$
\phi: A \times B \rightarrow B \text { be } \phi((a, b))=a \text { for all }(a, b) \in A \times B
$$

Then clearly ϕ is a surjective homomorphism with $\operatorname{ker} \phi=\left\{e_{1}\right\} \times B$.
Therefore by the first homomorphism theorem we have
$\frac{A \times B}{\left\{e_{1}\right\} \times B} \simeq B$
Similarly $\frac{A \times B}{A \times\left\{e_{2}\right\}} \simeq A$.
From the above it is clear that $\left\{e_{1}\right\} \times B \triangleleft A \times B$ and $A \times\left\{e_{2}\right\} \triangleleft A \times B$.

Proof of (ii) Define the map

$$
\psi:\left\{e_{1}\right\} \times B \rightarrow B \text { by } \psi\left(\left(e_{1}, b\right)\right)=b \text { for all }\left(e_{1}, b\right) \in\left\{e_{1}\right\} \times B
$$

Observe that ψ is an isomorphism.
Hence $\left\{e_{1}\right\} \times B \simeq B$.
Similarly $A \times\left\{e_{1}\right\} \simeq A$.

Proof of the example:

First suppose that $A \times B$ is solvable. Note that A and B are homomorphic images of $A \times B$ under the homomorphisms $(a, b) \mapsto a$ and $(a, b) \mapsto b$. Now it follows that A, B are solvable, since every homomorphic image of a solvable group is solvable.

Conversely suppose that A, B are solvable. Now we have to show $A \times B$ is solvable.

As $\left\{e_{1}\right\} \times B \triangleleft A \times B, \quad\left\{e_{1}\right\} \times B \simeq B$ and $\frac{A \times B}{\left\{e_{1}\right\} \times B} \simeq A$.
Since A, B are solvable, it follows that $\left\{e_{1}\right\} \times B, \frac{A \times B}{\left\{e_{1}\right\} \times B}$ are solvable.
Therefore $A \times B$ is solvable (in view of theorem 4.5.3).

4.6 Summary

In this lesson, we have introduced the notion of normal series and composition series. Also we have established that any two composition series of a finite group are equivalent. Further we have deduced the fundamental theorem of arithmetic as a consequence of Jordan-Holder theorem.

In section 4.4, we have defined the derived group. In section 4.5, we have introduced the notion of solvable group and characterized solvable groups. Also at the end of the section, we have established that the direct product (external direct product) of two solvable groups is solvable.

4.10 Model Examination Questions

(1) Write down a composition series for the Klein four group.
(2) Find all composition series for $\frac{Z}{<30>}$. Show that they are equivalent.
(3) If G is a cyclic group such that $|G|=p_{1} p_{2} \ldots p_{r}$ where $p_{i}^{\prime} s$ are distinct primes, then show that the number of distinct composition series of G is r !
(4) Let G be a finite group and $N \triangleleft G$. Show that G has a composition series in which N appears as a term.
(5) Find the composition factors of the additive group of integers modulo 8.

4.11 Glossary

Normal series, Composition series, Equivalence of composition series, JordanHolder theorem,Derived group, Solvable group, Direct product.

LESSON-05

NILPOTENT GROUPS

5.1 Introduction.

In this lesson we define nilpotent group and establish that every group of prime power order is nilpotent.

5.2 Definition: Center of a group

Let G be a group. We know that the center of group is denoted by $Z(G)$ and is defined as $Z(G)=\{x \in G / x g=g x \quad \forall g \in G\}$.

Clearly $Z(G)$ is an abelian subgroup of G and further $Z(G)$ is also normal in G.

Recall that $Z(G)=G$ if and only if G is abelian.

5.3 The $n^{\text {th }}$ center of a group.

We define $n^{\text {th }}$ center of a group G inductively as follows
For $n=1$, let $Z_{1}(G)=Z(G)$ clearly $Z_{1}(G) \triangleleft G$.
Now consider the quotient group $\frac{G}{Z_{1}(G)}$.
The center $Z\left(\frac{G}{Z_{1}(G)}\right)$ of $\frac{G}{Z_{1}(G)}$ is again a normal subgroup of $\frac{G}{Z_{1}(G)}$.
That is $Z\left(\frac{G}{Z_{1}(G)}\right) \triangleleft \frac{G}{Z_{1}(G)}$.
Now there is a unique normal subgroup $Z_{2}(G)$ of G such that

$$
Z\left(\frac{G}{Z_{1}(G)}\right)=\frac{Z_{2}(G)}{Z_{1}(G)} .
$$

Hence $\frac{Z_{2}(G)}{Z_{1}(G)} \triangleleft \frac{G}{Z_{1}(G)}$.
Continuing in the above manner, we have a unique normal subgroup $Z_{n}(G)$ of G such that

$$
\frac{Z_{n}(G)}{Z_{n-1}(G)}=Z\left(\frac{G}{Z_{n-1}(G)}\right) \text { for every natural number } n>1 \text { and } Z_{n}(G) \text { is }
$$

called as the $n^{\text {th }}$ center of G.
Thus we have $\frac{Z_{n}(G)}{Z_{n-1}(G)}=Z\left(\frac{G}{Z_{n-1}(G)}\right)$ for any natural number $n>1$.
For $n=0$, we set $Z_{0}(G)=\{e\}$.

5.3.1 Remark:

Observe that $\left(Z_{n}(G)\right)^{\prime} \subset Z_{n-1}(G)$.
From the definition of $Z_{n}(G)$,

$$
\begin{aligned}
Z_{n}(G) & =\left\{x \in G / Z_{n-1}(G) x Z_{n-1}(G) y=Z_{n-1}(G) y Z_{n-1}(G) x \quad \forall y \in G\right\} . \\
& =\left\{x \in G / Z_{n-1}(G) x y x^{-1} y^{-1}=Z_{n-1}(G) \quad \forall y \in G\right\} . \\
& =\left\{x \in G / x y x^{-1} y^{-1} \in Z_{n-1}(G) \quad \forall y \in G .\right.
\end{aligned}
$$

We have $\left(Z_{n}(G)\right)^{\prime}=$ the derived group of $Z_{n}(G)$.

$$
=[S] .
$$

where $S=\left\{x y x^{-1} y^{-1} / x, y \in Z_{n}(G)\right\}$.
From the above $S \subset Z_{n-1}(G)$.
Therefore showing that $\left(Z_{n}(G)\right)^{\prime} \subset Z_{n-1}(G)$.

5.3.2 Definition: The upper central series of G

The ascending series

$$
\{e\}=Z_{0}(G) \subset Z_{1}(G) \subset Z_{2}(G) \subset \ldots \subset Z_{n-1}(G) \ldots \subset Z_{n}(G) \subset \ldots
$$

of subgroups of a group G is called the upper central series of G.

5.4 Definition: Nilpotent Group

A group G is said to be nilpotent if $Z_{m}(G)=G$ for some natural number m.
The smallest m such that $Z_{m}(G)=G$ is called the class of nilpotency of G.

5.4.1 Example :

(1) Every abelian group G is a nilpotent group of class 1 since

$$
Z_{1}(G)=Z(G)=G
$$

5.4.2 Theorem:

A group of order p^{n} (p is a prime) is nilpotent.

Proof.

Let G be a group and $|G|=p^{n}$ where p is a prime and n is a natural number. We know that G has a nontrivial center $Z_{1}(G)$. Therefore $\left|Z_{1}(G)\right|>1$. Now the quotient group $\frac{G}{Z_{1}(G)}$ is of order p^{r}, where r is a natural number with $r<n$ and r has a nontrivial center $\frac{Z_{2}(G)}{Z_{1}(G)}$.
Further $\left|\frac{Z_{2}(G)}{Z_{1}(G)}\right|>1$.
which implies $\frac{\left|Z_{2}(G)\right|}{\left|Z_{1}(G)\right|}>1$.
From which it follows that $\left|Z_{1}(G)\right|<\left|Z_{2}(G)\right|$.
Continuing in the above manner, after a finite number of steps, we get $\left|Z_{m}(G)\right|=p^{n}$ for some $m \leq n$.

Hence we have $Z_{m}(G)=G$
Showing that G is nilpotent.

5.4.3 Theorem

A group G is nilpotent if and only if G has a normal series.

$$
\{e\}=G_{0} \subset G_{1} \subset \ldots \subset G_{m}=G
$$

such that $\frac{G_{i}}{G_{i-1}} \subset Z\left(\frac{G}{G_{i-1}}\right)$ for all $i=1,2, \ldots m$.

Proof.

Let G be a group. For any natural number n, the $n^{\text {th }}$ center of G is denoted by $Z_{n}(G)$ is a normal subgroup of G such that $\frac{Z_{n}(G)}{Z_{n-1}(G)}=Z\left(\frac{G}{Z_{n-1}(G)}\right)$ where $Z_{0}(G)=\{e\}$. Also we have $Z_{n-1}(G) \triangleleft Z_{n}(G)$ and G has a upper central series

$$
\{e\}=Z_{0}(G) \subset Z_{1}(G) \subset Z_{2}(G) \subset \ldots \subset Z_{n-1}(G) \ldots \subset Z_{n}(G) \subset \ldots
$$

First suppose that G is a nilpotent group of class m where m is a natural number then

$$
\{e\}=Z_{0}(G) \subset Z_{1}(G) \subset Z_{e}(G) \subset \ldots \subset Z_{m-1}(G) \ldots \subset Z_{m}(G)=G
$$

is the required normal series with the stated condition.
Conversely suppose that G has a normal series

$$
\begin{aligned}
\{e\}= & G_{0} \subset G_{1} \subset G_{2} \ldots \subset G_{m}=G \\
& \text { such that } \frac{G_{i}}{G_{i-1}} \subset Z\left(\frac{G}{G_{i-1}}\right), 1 \leq i \leq m
\end{aligned}
$$

We now claim that $G_{i} \subset Z_{i}(G)$.
We prove this by induction on i.
For $i=1$, we have $\frac{G_{1}}{G_{0}}=\frac{G_{1}}{\{e\}} \subset Z\left(\frac{G}{\{e\}}\right)$
i.e. $G_{1} \subset Z_{1}(G)$

We assume that $G_{i-1} \subset Z_{i-1}(G)$.
From the condition $\frac{G_{i}}{G_{i-1}} \subset Z\left(\frac{G}{G_{i-1}}\right)$
For every $x \in G_{i}, y \in G$,
We have $G_{i-1} x G_{i-1} y=G_{i-1} y G_{i-1} x$

$$
\text { which imply } x y x^{-1} y^{-1} \in Z_{i-1}(G) .
$$

Thus we have $x \in Z_{i}(G)$. (By remark 7.4.1)
Proving that $G_{i} \subset Z_{i}(G)$.
Now for $i=m$, we have

$$
G=G_{m} \subset Z_{m}(G)
$$

giving that $Z_{m}(G)=G$.
which shows that G is nilpotent, completing the proof of the theorem.

5.4.4 Corollary.

Every nilpotent group is solvable.

Proof.

Let G be a nilpotent group of class m so that $Z_{m}(G)=G$.
By the above theorem 7.6.3, G has a normal series.

$$
\{e\}=Z_{0}(G) \subset Z_{1}(G) \subset Z_{2}(G) \subset \ldots \subset Z_{m}(G)=G
$$

where $\frac{Z_{i}(G)}{Z_{i-1}(G)}=Z\left(\frac{G}{Z_{i-1}(G)}\right), 1 \leq i \leq m$.
Since the center is always abelian, all the factors of the above normal series are abelian. Thus G has a normal series with abelian factors.

Hence G is abelian.

5.4.5 Remark.

The converse of the above result is not true. That is every solvable group is not nilpotent.

As an example we have the following
Consider S_{3}, the symmetric group on 3 symbols.
We know that $Z\left(S_{3}\right)=\{e\}$ that is $Z_{1}\left(S_{3}\right)=\{e\}$
Also $\frac{Z_{2}\left(S_{3}\right)}{Z_{1}\left(S_{3}\right)}=Z\left(\frac{S_{3}}{Z_{1}\left(S_{3}\right)}\right)=Z\left(\frac{S_{3}}{\{e\}}\right)=Z\left(S_{3}\right)=\{e\}$.
which imply $Z_{2}\left(S_{3}\right)=\{e\} \neq S_{3}$.
Continuing in the same manner $Z_{m}\left(S_{3}\right) \neq S_{3}$ for no positive integer m.
Therefore S_{3} is not nilpotent.

5.4.6 Remark.

We observe the following
cyclic groups \subset abelian groups \subset nilpotent groups \subset solvable groups \subset all groups.

Note that all the above containments are proper.

5.4.7 Theorem

Let G be a nilpotent group. Then
(i) Every subgroup of G is nilpotent.
(ii) Every homomorphic image of G is also nilpotent.

Proof.

Let G be a nilpotent group of class m, that is m is the least positive integer such that $Z_{m}(G)=G$.
(i) Let H be a subgroup of G.

We now show that $Z_{m}(H)=H$.
Recall that $Z_{n}(G)=\left\{x \in G / x y x^{-1} y^{-1} \in Z_{n-1}(G) \quad \forall y \in G\right\}$.
For every $x \in H \cap Z_{1} G$ we have $x g=g x$ for all $g \in G$. From which we get $x h=h x$ for all $h \in H$ which imply $x \in Z_{1}(H)$.

Proving that $H \cap Z_{1}(G) \subset Z_{1}(H)$.
Again for any $x \in H \cap Z_{2}(G)$ and for all $y \in H$ we have $x \in H$ and $y \in H$ and $x \in Z_{2}(G)$.

Now $x y x^{-1} y^{-1} \in H$ and $x y x^{-1} y^{-1} \in Z_{1}(G)$.
Thus $x y x^{-1} y^{-1} \in H \cap Z_{1}(G)$.
Hence $x y x^{-1} y^{-1} \in Z_{1}(H)$ for all $y \in H$.
Therefore $x \in Z_{2}(H)$.
Proving that $H \cap Z_{2}(G) \subset Z_{2}(H)$.

Continuing in the same manner, we get

$$
H \cap Z_{i}(G) \subset Z_{i}(H), 1 \leq i \leq m
$$

Now $H=H \cap G=H \cap Z_{m}(G) \subset Z_{m}(H)$.
Hence proving that $Z_{m}(H)=H$ since $Z_{m}(H) \subset H$.
which shows that H is nilpotent.
(ii) Now let $\phi: G \rightarrow K$ be a surjective homomorphism. That is let $K=\phi(G)$ be the homomorphic image of G under ϕ.

Let $x \in Z_{1}(G)$. Then $x y x^{-1} y^{-1}=e$ forall $y \in G$.
As $\phi(x) \in \phi\left(Z_{1}(G)\right)$ we have $\phi\left(x y x^{-1} y^{-1}\right)=\phi(e)$ for all $\phi(y) \in K$.

That is $\phi(x) \phi(y) \phi(x)^{-1} \phi(y)^{-1}=e^{\prime}, \phi(y) \in K$
which proves $\phi(x) \in Z_{1}(K)$ since ϕ is surjective.
Thus showing that $\phi\left(Z_{1}(G)\right) \subset Z_{1}(K)$.
Also for any $x \in Z_{2}(G)$, we have $x y x^{-1} y^{-1} \in Z_{1}(G)$ for all $y \in G$.
Thus $\phi(x) \phi(y) \phi(x)^{-1} \phi(y)^{-1} \in \phi\left(Z_{1}(G)\right)$ for all $\phi(y) \in K$.
which implies $\phi(x) \in Z_{2}(K)$ since $\phi\left(Z_{1}(G)\right) \subset Z_{1}(K)$ proving that $\phi\left(Z_{2}(G)\right) \subset$ $Z_{2}(K)$.

Repeating the same argument, we obtain

$$
\phi\left(Z_{i}(G)\right) \subset Z_{i}(K), \quad 1 \leq i \leq m
$$

Now $K=\phi(G)=\phi\left(Z_{m}(G)\right) \subset Z_{m}(K)$.
Hence $Z_{m}(K)=K$ since $Z_{m}(K) \subset K$.
Proving that $K=\phi(G)$ is nilpotent.
Thus every homomorphic image of a nilpotent group is nilpotent.
Hence the theorem.

5.4.8 Theorem:

Let H and K are nilpotent groups then $H \times K$ is nilpotent.

Proof.

Let H and K be nilpotent groups of class m and n respectively, that is m and n are the least positive integers such that $Z_{m}(H)=H$ and $Z_{n}(K)=K$. Without loss of generality, we may assume that $m \leq n$. Therefore we have $Z_{n}(H)=H$ and $Z_{n}(K)=K$.

Now,

$$
\begin{aligned}
Z(H \times K) & =\{(h, k) \in H \times K /(h, k)(x, y)=(x, y)(h, k) \forall(x, y) \in H \times K .\} . \\
& =\{(h, k) \in H \times K / h x=x h \text { and } k y=y k \forall x \in H, y \in K\} . \\
& =\{(h, k) \in H \times K / h \in Z(G), k \in Z(K) .\} . \\
& =Z(H) \times Z(K) .
\end{aligned}
$$

Proving that $Z_{1}(H \times K)=Z_{1}(H) \times Z_{1}(K)$.
Also

$$
\begin{aligned}
Z_{2}(H \times K) & =\left\{(h, k) \in H \times K /(h, k)(x, y)(h, k)^{-1}(x, y)^{-1} \in Z_{1}(H \times K) \forall(x, y) \in H \times K\right\} \\
& =\left\{(h, k) \in H \times K /\left(h x h^{-1} x^{-1}, k y k^{-1} y^{-1}\right) \in Z_{1}(H) \times Z_{1}(K) \forall x \in H, y \in K\right\} . \\
& =\left\{(h, k) \in H \times K / h x h^{-1} x^{-1} \in Z_{1}(H) \forall x \in H, k y k^{-1} y^{-1} \in Z_{1}(K) \forall y \in K\right\} . \\
& =\left\{(h, k) \in H \times K / h \in Z_{2}(H), k \in Z_{2}(K)\right\} . \\
& =Z_{2}(H) \times Z_{2}(K) .
\end{aligned}
$$

Continuing in the same manner, we get
$Z_{i}(H \times K)=Z_{i}(H) \times Z_{i}(K), \quad 1 \leq i \leq n$.
Hence $Z_{n}(H \times K)=Z_{n}(H) \times Z_{n}(K)=H \times K$.
Proving that $H \times K$ is nilpotent.

5.4.9 Corollary.

Let $H_{1}, H_{2}, \ldots H_{n}$ be any n nilpotent groups. Then $H_{1} \times H_{2} \times \ldots \times H_{n}$ is also nilpotent.

Proof.

Given that $H_{1}, H_{2}, \ldots H_{n}$ are nilpotent groups.

We now prove that $H_{1} \times H_{2} \times \ldots \times H_{n}$ is nilpotent by induction on n.
For $n=2$, the result follows from the theorem 7.4.8
Now suppose that the theorem is true when the number of groups is less than n.

Therefore, $H=H_{1} \times H_{2} \times \ldots \times H_{n-1}$ is nilpotent.
Now $H \times H_{n}$ is nilpotent by the theorem 7.4 .8 which proves that
$H \times H_{n}=H_{1} \times H_{2} \times \ldots \times H_{n-1} \times H_{n}$ is nilpotent.
Hence the theorem.

5.4.10 Example.

Give an example of a group G such that G has a normal subgroup N with both N and $\frac{G}{N}$ are nilpotent but G is not nilpotent.

Sol.

We have S_{3}, the symmetric group on three symbols
That is $S_{3}=\left\{e, a, a^{2}, b, a b, a^{2} b\right\}$ with the defining relations $a^{3}=e=b^{2}$, $b a=a^{2} b$.

Let $N=[a]=\left\{e, a, a^{2}\right\}$
Clearly $N \triangleleft S_{3}$ and $\frac{S_{3}}{N} \simeq \frac{Z}{<2>}$
Further observe that $N, \frac{S_{3}}{N}$ are nilpotent but S_{3} is not nilpotent.

5.5 Summary

In section 5.3 we have defined $n^{\text {th }}$ center of a group G. In section 5.4 the notion of nilpotent group introduced. At the end of section, we have proved the direct product of finite number of nilpotent groups is nilpotent.

5.6 Model Examination Questions

(1) Find the upper central series of A_{4} and S_{4}.
(2) Show that D_{4} is nilpotent of class 2 .
(3) Show that S_{n} is not nilpotent for $n \geq 3$.
(4) Show that if $\frac{G}{Z(G)}$ is nilpotent then G is nilpotent.

5.7 Glossary

Upper cental series of a group, Nilpotent group, Class of nilpotency.

UNIT-II

LESSON-06

DIRECT PRODUCTS

6.1 Introduction

In this lesson the internal direct product (sum) of a finite number of subgroups of a group is introduced through a set of necessary and sufficient conditions. If a group G is isomorphic to the direct product of finite number of subgroups whose structures are known the structure of G can be generally determined.

6.2 Direct Product of Groups

6.2.1 Definition : Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups then the cartesian product $G_{1} \times G_{2} \times \ldots \times G_{n}$ is a group under the point wise binary operation $\left(g_{1}, g_{2}, \ldots, g_{n}\right)\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{n}^{\prime}\right)=\left(g_{1} g_{1}^{\prime}, g_{2} g_{2}^{\prime}, \ldots, g_{n} g_{n}^{\prime}\right)$ where $g_{i}, g_{i}^{\prime} \in G_{i}$, $1 \leq i \leq n$. If e_{i} is the identity of G_{i} then $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is the identity of $G_{1} \times G_{2} \times \ldots \times G_{n}$ and $\left(g_{1}^{-1}, g_{2}^{-1}, \ldots, g_{n}^{-1}\right)$ is the inverse of $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$. This group is called the external direct product of groups $G_{1}, G_{2}, \ldots, G_{n}$.
6.2.2 Theorem : Let $H_{1}, H_{2}, \ldots, H_{n}$ be a family of subgroups of a group G and let $H=H_{1} H_{2} \ldots H_{n}$. Then the following are equivalent.
(i) $H_{1} \times H_{2} \times \ldots \times H_{n} \simeq H$ under the cononical mapping that sends $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $x_{1} x_{2} \ldots x_{n}$.
(ii) $H_{i} \triangleright H$ and every element $x \in H$ can be uniquely expressed as $x=$ $x_{1} x_{2} \ldots x_{n}$ where $x_{i} \in H_{i}, 1 \leq i \leq n$.
(iii) $H_{i} \triangleright H$ and if $x_{1} x_{2} \ldots x_{n}=e$ then $x_{i}=e$ for each i.
(iv) $H_{i} \triangleright H$ and $H_{i} \cap\left(H_{1} H_{2} \ldots H_{i-1} H_{i+1} \ldots H_{n}\right)=(e), 1 \leq i \leq n$.

Proof. $(i) \Rightarrow(i i)$. Assume that (i) is true.

We have $H_{1} \times H_{2} \times \ldots \times H_{n} \simeq H$ under the canonical map σ defined by $\sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \ldots x_{n}$ where $x_{i} \in H_{i}, 1 \leq i \leq n$.
Let $H_{i}^{\prime}=\left\{\left(e, \ldots, h_{i}, \ldots, e\right) \mid h_{i} \in H_{i}\right\}$ then for each $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $H_{1} \times H_{2} \times \ldots \times H_{n}$, it is easy to see that $x H_{i}^{\prime} x^{-1}=H_{i}^{\prime}$. This shows that $H_{i}^{\prime} \triangleright H_{1} \times H_{2} \times \ldots \times H_{n}$. Also $\sigma: H_{i}^{\prime} \rightarrow H_{i}$ defined by $\sigma\left(\left(e, \ldots, h_{i}, \ldots, e\right)\right)=$ $e \ldots h_{i} \ldots e=h_{i} \quad \forall \quad h_{i} \in H_{i}$. Clearly σ is bijective and is a homomorphism. Hence $H_{i}^{\prime} \simeq H_{i}$. Now $H_{i}^{\prime} \simeq H_{i}, H_{i}^{\prime} \triangleright H_{1} \times H_{2} \times \ldots \times H_{n}$ and $H_{1} \times H_{2} \times \ldots \times H_{n} \simeq H \Rightarrow H_{i} \triangleright H$. Suppose $x \in H$ has two representations $x=x_{1} x_{2} \ldots x_{n}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}$ where $x_{i}, x_{i}^{\prime} \in H_{i}(1 \leq i \leq n)$ then $\sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sigma\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \Rightarrow x_{1} x_{2} \ldots x_{n}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}(\sigma$ is $1-1)$ $\Rightarrow x_{i}=x_{i}^{\prime}$ for $i=1,2, \ldots, n$. Therefore each element $x \in H$ is uniquely written as $x=x_{1} x_{2} \ldots x_{n}, x_{i} \in H_{i} 1 \leq i \leq n$.
$(i i) \Rightarrow(i i i)$. Assume that (ii) is true.
Let $x_{1} x_{2} \ldots x_{n}=e=e e \ldots e \Rightarrow x_{i}=e, 1 \leq i \leq n$. (by unique representation) $(i i i) \Rightarrow(i v)$. Assume that (iii) is true.
We first prove that $H_{i} \cap H_{j}=\{e\}, i \neq j$. If $x_{i} \in H_{i} \cap H_{j}$ then $e=x_{i} x_{i}^{-1} \in$ $H_{i} H_{j}$. By (iii) $x_{i} x_{i}^{-1}=e \Rightarrow x_{i}=e=x_{i}^{-1}$. Thus $H_{i} \cap H_{j}=\{e\}, i \neq j$. Let $x \in H_{i}, y \in H_{j}, i \neq j$. Since H_{i}, H_{j} are normal subgroups of H then $x y x^{-1} \in H_{j}$ and $y x y^{-1} \in H_{i}$. Further $x y x^{-1} y^{-1} \in H_{i}$ and $x y x^{-1} y^{-1} \in H_{j}$, therefore $x y x^{-1} y^{-1}=e$, since $H_{i} \cap H_{j}=\{e\}, i \neq j \Rightarrow x y=y x \forall x \in$ $H_{i}, y \in H_{j}$. Let $x_{i}=x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n}$, where $x_{i} \in H_{i}, 1 \leq i \leq n$ this implies that $e=x_{i}^{-1} x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n}=x_{1} x_{2} \ldots x_{i-1} x_{i}^{-1} x_{i+1} \ldots x_{n}$ by the commutation of the elements of H_{i} and $H_{j}, i \neq j$. By (iii) we get $x_{i}=e$, $1 \leq i \leq n$. Thus $H_{i} \cap\left(H_{1} \ldots H_{i-1} H_{i+1} \ldots H_{n}\right)=\{e\}, 1 \leq i \leq n$ $(i v) \Rightarrow(i)$. Assume that (iv) is true.

We first note that $x y=y x \forall x \in H_{i}, y \in H_{j}, i \neq j$.
Define a map $\sigma: H_{1} \times H_{2} \times \ldots \times H_{n} \rightarrow H$ by $\sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \ldots x_{n}$.
Clearly the map σ is surjective.
σ is homomorphism: For all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in H_{1} \times$ $H_{2} \times \ldots \times H_{n}$ then we have $\sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \ldots x_{n}$ and $\sigma\left(y_{1}, y_{2}, \ldots, y_{n}\right)=$ $y_{1} y_{2} \ldots y_{n}$

$$
\begin{aligned}
\sigma\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) & =\sigma\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right) \\
& =x_{1} y_{1} x_{2} y_{2} \ldots x_{n} y_{n} \\
& =x_{1} x_{2} \ldots x_{n} y_{1} y_{2} \ldots y_{n}(\text { by the commutation }) \\
& =\sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

Thus σ is a homomorphism. Now

$$
\begin{aligned}
\operatorname{ker} \sigma & =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=e\right\} \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1} x_{2} \ldots x_{n}=e\right\} \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}^{-1}=x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n}, 1 \leq i \leq n\right\} \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}=e, 1 \leq i \leq n\right\} \quad \text { by (iv) } \\
& =\{(e, e, \ldots, e)\}
\end{aligned}
$$

σ is injective. Therefore $H_{1} \times H_{2} \times \ldots \times H_{n} \simeq H$.

6.3 Internal Direct Product

6.3.1 Definition : Let $H_{1}, H_{2}, \ldots, H_{n}$ be subgroups of a group G and let $H=H_{1} H_{2} \ldots H_{n}$ then we say that H is the internal direct product of H_{i}, $1 \leq i \leq n$ if the subgroup H_{i} satisfy any one of the statement of the theorem

It may be noted that the external direct product $H_{1} \times H_{2} \times \ldots \times H_{n}$ always exists, where as the internal direct product of $H_{i}, 1 \leq i \leq n$ exists if and only if the canonical map $H_{1} \times H_{2} \times \ldots \times H_{n} \rightarrow H_{1} H_{2} \ldots H_{n}$ is an isomorphism.

The emphasis of the words internal and external may be dropped if the subgroups $H_{i}, 1 \leq i \leq n$ satisfy any one of the condition of theorem (6.2.2).
6.3.2 Direct Sum : If G is an additive group and $H_{i}(1 \leq i \leq n)$ are subgroups of G then the (internal) direct product of subgroups H_{i} of G is called the direct sum of H_{i} and is also written as $H_{1} \oplus H_{2} \oplus \ldots \oplus H_{n}$.
6.3.3 Example : If each non identical element of a finite group G is of order 2 then $|G|=2^{n}$ and $G \simeq C_{1} \times C_{2} \times \ldots \times C_{n}$, where each $C_{i}(1 \leq i \leq n)$ is cyclic group of order 2 .

Solution. Given that G is a finite group and each element $x \in G, x \neq e$ is of order 2. Therefore $x=x^{-1} \forall x \in G$. For all $a, b \in G$ we have $a b \in G$ and $a b=(a b)^{-1}=b^{-1} a^{-1}=b a$. Hence G is abelian. Let $a_{1} \in G, a_{1} \neq e$ and $C_{1}=\left[a_{1}\right]$. If $G=C_{1}$ then the result is true. Otherwise there exist an element $a_{2} \in G, a_{2} \notin C_{1}$. Let $C_{2}=\left[a_{2}\right]$, consider the product $C_{1} C_{2}$, clearly $C_{1} C_{2}$ is a subgroup of G (since G is abelian), $C_{1} \cap C_{2}=\{\mathrm{e}\}$ and $\left|C_{1} C_{2}\right|=\left|C_{1}\right|\left|C_{2}\right|=2^{2}$. Further C_{1} and C_{2} are normal in $C_{1} C_{2}$. On using theorem (8.3)(iv) we get $C_{1} C_{2} \simeq C_{1} \times C_{2}$. Thus the product is the direct product. If $G=C_{1} C_{2}$ then $|G|=2^{2}$ and $G \simeq C_{1} \times C_{2}$. Thus, the result follows. Otherwise $C_{1} C_{2}$ is a proper subgroup of G. This process continues and ultimately, we get $G=C_{1} C_{2} \ldots C_{n}$ where $C_{i}=\left[a_{i}\right], 1 \leq i \leq n$. Observe that each C_{i} is normal in G (since G is abelian) and $C_{i} \cap\left(C_{1} C_{2} \ldots C_{i-1} C_{i+1} \ldots C_{n}\right)=\{e\}, 1 \leq i \leq n$.

By the theorem (8.2.2)(iv) we get $C_{1} C_{2} \ldots C_{n} \simeq C_{1} \times C_{2} \times \ldots \times C_{n}$. Hence the result.
6.3.4 Example : A group G of order 4 is either cyclic group or $G \simeq C_{1} \times C_{2}$ a direct product of two cyclic groups $C_{i}, i=1,2$ each of order 2 .

Solution. Given $|G|=4$ then by Lagranges theorem the order of every element $a(a \neq e)$ of G divides $4 \Rightarrow O(a)=4$ or 2 . In the case of $O(a)=4$ we get $G=[a]$ a cyclic group. If $O(a)=2$, so every non identity element of G is of order 2. Let $C_{1}=[a]$ and $C_{2}=[b]$, where $b \notin C_{1}$. Hence $G \simeq C_{1} \times C_{2}$ by the above Example (8.3.3).
6.3.5 Note : Every group of order 4 is either cyclic group or isomorphic to klein's four group.
6.3.6 Example : Let G be a finite group of order pq, where p, q are district primes and if G has a normal subgroup H of order p and a normal subgroup K of order q then G is cyclic.

Solution. Given $|G|=p q$, where p and q are distinct primes. $H \triangleright G, K \triangleright G$ and $|H|=p,|K|=q$. By Lagrange's theorem $|H \cap K|$ divides both $|H|$ and $|K|$. Since p and q are distinct primes we get $|H \cap K|=1$.Therefore $H \cap K=\{e\}$.

Let $h \in H, k \in K$ and H, K are normal in G we get $h k h^{-1} k^{-1} \in H \cap$ $K \Rightarrow h k=k h \quad(H \cap K=\{e\})$. Thus $H K$ is a subgroup of G. Further $|H K|=\frac{|H||K|}{H \cap K \mid}=p q=|G|$. Thus $G=H K$. Clearly $H \triangleright H K, K \triangleright H K$ and $H K \simeq H \times K$ by $8.3(i v)$. Since p, q are primes then H and K are cyclic. Let
$H=[h], K=[k]$ then

$$
\begin{aligned}
(h k)^{p q} & =(h k)(h k) \ldots(h k) \quad(p q \text { times }) \\
& =(h h \ldots h)(k k \ldots k) \\
& =h^{p q} k^{p q} \\
& =\left(h^{p}\right)^{q}\left(k^{q}\right)^{p} \\
& =e \Rightarrow G=<h k>
\end{aligned}
$$

G is generated by $h k$. Thus G is cyclic and $G=H \times K$. Hence the result. 6.3.7 Example : If G is cyclic group of order $m n$, where $(m, n)=1$ then $G \simeq H \times K$, where H and K are subgroup of G orders m and n respectively. Solution. G is a cyclic group of order $m n$ and $(m, n)=1$. Since m and n divides $|G|$ and G is cyclic group there exist unique subgroups H and K of G order m and n respectively. (If G is a finite cyclic group of order n and d is a positive divisor of n then G has a unique subgroup of order d). By Lagrange theorem $|H \cap K|$ divides both $|H|$ and $|K|$, so $|H \cap K|=1$ since $(m, n)=1$. Therefore $H \cap K=\{e\}$ and $|H K|=\frac{|H||K|}{H \cap K \mid}=m n=|G|$, thus $G=H K$. Since G is cyclic group then H and K are normal in $G=H K$ and using theorem (8.3) we get $H K \simeq H \times K$. Hence $G \simeq H \times K$.
6.3.8 Example : If G is a finite cyclic group of order $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, where p_{i} 's are distinct primes $1 \leq i \leq k$. Then $G \simeq H_{1} \times H_{2} \times \ldots \times H_{k}$, where H_{i} is a cyclic group order $p_{i}, 1 \leq i \leq k$.
Solution. Given that G is a finite cyclic group and $|G|=n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, where p_{i} 's are distinct primes and e_{i} 's are natural numbers $1 \leq i \leq k$. We shall prove the result by induction on n, the order G. Assume that the result
is true for all groups whose order is less than n. We have $|G|=n=m p_{k}^{e_{k}}$, where $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k-1}^{e_{k-1}}$. Now $\left(m, p_{k}^{e_{k}}\right)=1$ and using Example (8.10)we get $G \simeq H \times H_{k}$, where H and H_{k} are cyclic subgroups of G of orders m and $p_{k}^{e_{k}}$ respectively. Since $|H|=m<n$, by induction of hypothesis $H \simeq H_{1} \times H_{2} \times \ldots \times H_{k-1}$, where H_{i} is a cyclic group of order $p_{i}^{e_{i}}$, $1 \leq i \leq k-1$. Thus $G \simeq H \times H_{k}$. Hence $G \simeq H_{1} \times H_{2} \times \ldots \times H_{k-1} \times H_{k}$.

6.3.9 Example : Show that the group $(Z /(4),+)$ cannot be written as

 the direct sum of two non-trivial subgroups.Solution. Assume that $Z /(4)$ is the direct sum of two non-trivial subgroups H and K then each of H and K must be of order 2 and $H \cap K=\{\overline{0}\}$. Since $Z /(4)$ has a unique subgroup $\{\overline{0}, \overline{2}\}$ of order 2 then $H=K=\{\overline{0}, \overline{2}\}$. This is not possible since $H \oplus K=H \neq Z /(4)$. Hence $(Z /(4),+)$ cannot be written as a direct sum of two non-trivial subgroups.
6.3.10 Example: Show that the group $Z /(10)$ is a direct sum of $H=\{\overline{0}, \overline{5}\}$ and $K=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$.
Solution. We known that the group $Z /(10)$ is abelian. Note that $H=$ $[\overline{5}], K=[\overline{2}]$.
H and K are normal of $Z /(10)$ and $H \cap K=\{\overline{0}\}$. Further $H \oplus K=$ $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{5}, \overline{7}, \overline{9}, \overline{1}, \overline{3}\}=Z /(10)$. Therefore $Z /(10)$ is the (internal) direct sum of H and K.

6.4 Summary

In this lesson we have introduced the notion of direction product of a finite number of subgroups of a group. Also we have defined internal direct product and direct sum. At the end of this section we given examples.

6.5 Model Examination Questions

(1) Show that the group $Z /(8)$ cannot be written as the direct sum of two nontrivial subgroups.
(2) Let $N \triangleleft G=H \times K$. Prove that either N is a abelian or N intersects one of the subgroups $H \times\{e\},\{e\} \times K$ nontrivially.

6.6 Glossary

Direct product, internal direct product, direct sum

LESSON-07

FINITELY GENERATED ABELIAN GROUPS AND THE INVARIANT OF A FINITE ABELIAN GROUP

7.1 Introduction : In this lesson we study that any finitely generated abelian group can be decomposed as a finite direct sum of cyclic groups. This decomposition, when applied to finite abelian groups, enables us to find the number of nonisomorphic abelian groups of a given order.

Let G be a group and S be a subset of G. Let \mathscr{G} be the family of subgroups of G containing S. let $M=\cap A$, where the intersection is taken over all subgroups A of \mathscr{G}. Clearly M is the smallest subgroup of G containing S or M is called the subgroup of G generated by S and we write $M=[S]$. If S is empty then $M=\{e\}$.

If S is a nonempty subset of G then $M=[S]$, the subgroup generated by S, is the set of finite product $x_{1} x_{2} \ldots x_{n}$ such that for each $i, x_{i} \in S$ or $x_{i}^{-1} \in S$. In other words every $m \in M$ is a finite product $m=x_{i_{1}}^{n_{1}} x_{i_{2}}^{n_{2}} \ldots x_{i_{k}}^{n_{k}}$ where $x_{i_{j}}$'s are elements of S and are not necessarily distinct and n_{j} 's are integers.

If $G=[S]$ for some nonempty subset S of G then S is called a set of generators of G. If S is finite and $G=[S]$ then G is said to be finitely generated group i.e., a group G is said to be finitely generated if it is generated by a finite subset of G.

The following may be noted
(i) Every cyclic group is finitely generated.
(ii) Every finite group is finitely generated and the converse is not true.

For example $(Z,+)$ is finitely generated but is not finite
(iii) All groups are not finitely generated. For example $(Q,+)$.

7.2 Fundamental theorem of finitely generated abelian groups

7.2.1 Theorem : Let A be a finitely generated abelian group then A can be decomposed as a direct sum of a finite number of cyclic groups C_{i}. Precisely $A=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k}$ such that either $C_{1}, C_{2}, \ldots, C_{k}$ are all infinite or for some $j \leq k, C_{1}, C_{2}, \ldots, C_{j}$ are of order $m_{1}, m_{2}, \ldots, m_{j}$ respectively with $m_{1}\left|m_{2}\right| \ldots \mid m_{j}$ and C_{j+1}, \ldots, C_{k} are infinite.
Proof. Given that A is finitely generated abelian group i.e., A is generated by a finite number of elements of A.

Let k be the smallest number such that A is generated by a set of k elements. The theorem is proved by induction on k.

If $k=1$ then A is generated by a single element i.e., A is cyclic group and the theorem follows trivially.

Let $k>1$, and we assume that the theorem is valid for every group generated by a set of $k-1$ elements. Then we have the following possibilities. (i) A has a generating set $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ with the property that for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in Z$ such that the equation $\sum_{i=1}^{n} \alpha_{i} a_{i}=0 \Rightarrow \alpha_{i}=0(1 \leq i \leq k)$. (ii) A has no generating set of k elements with the property stated in (i).

Case(i) In this case none of the elements of S is the additive identity. It is easy to see that every subset of S has the property stated in (i). Let $C_{i}=\left[a_{i}\right]$ be the cyclic subgroup generated by $a_{i}, 1 \leq i \leq k$. Clearly $\alpha_{i} a_{i}=0 \Rightarrow \alpha_{i}=0$ hence C_{i} is an infinite cyclic group and $C_{i} \triangleright A$. Every element $a \in A$ has a unique representation of the form $a=\sum_{i=1}^{k} \alpha_{i} a_{i}$ where $\alpha_{i} \in Z$.

If $a=\sum_{i=1}^{k} \alpha_{i} a_{i}=\sum_{i=1}^{k} \beta_{i} a_{i}$ then $\sum_{i=1}^{k}\left(\alpha_{i}-\beta_{i}\right) a_{i}=0$ and this implies $\alpha_{i}=\beta_{i}$, $1 \leq i \leq k$. On using theorem (8.3) we get $A=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k}$ i.e., A is
the direct sum of finite numbers of infinite cyclic subgroups. This proves a part of the theorem.

Case(ii) In this case given any generating set $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ of A there exists integers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ not all of them zero such that $\sum_{i=1}^{k} \alpha_{i} p_{i}=0$. Since $\sum \alpha_{i} p_{i}=\sum\left(-\alpha_{i}\right) p_{i}=0$, we may assume that $\alpha_{i}>0$ for some i.

Now consider all possible generating sets of A with k elements and let X be the set of all k - tuples $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ of integers such that $\sum_{i=1}^{k} \alpha_{i} q_{i}=0$, $\alpha_{i}>0$ for some i, some generating set $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ of A. Let m_{1} be the least positive integer that occurs as a component in a k-tuple in X. Without loss of generality we may take m_{1} to be the first component, so that for some generating set $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ we have $m_{1} a_{1}+\alpha_{2} a_{2}+\ldots+\alpha_{k} a_{k}=0$. By division algorithm we can write $\alpha_{i}=q_{i} m_{1}+r_{i}, 0 \leq r_{i}<m_{1}, 2 \leq i \leq k$ putting $\alpha_{i}^{\prime} s$ in the above we get

$$
\begin{equation*}
m_{1} b_{1}+r_{2} a_{2}+\ldots+r_{k} a_{k}=0 \tag{a}
\end{equation*}
$$

where $b_{1}=a_{1}+q_{2} a_{2}+\ldots+q_{k} a_{k}=0$, here $b_{1} \neq 0$. If $b_{1}=0$ then $a_{1}=-\sum_{i=2}^{k} q_{i} a_{i}$ and this implies that A is generated by $k-1$ elements which is a contradiction to the maximality of k. Further $b_{1}=a_{1}-\sum_{i=2}^{k} q_{i} a_{i} \Rightarrow S^{\prime}=\left\{b_{1}, a_{2}, \ldots, a_{k}\right\}$ is a generating set of A. From the equation (7.2.1(a)) and by the minimal property of m_{1} we get $r_{2}=r_{3}=\ldots=r_{k}=0$. Thus we get $m_{1} b_{1}=0$. Let $C_{1}=\left[b_{1}\right]$. Now C_{1} is a cyclic subgroup of A of order m_{1}, since m_{1} is the least positive integer such that $m_{1} b_{1}=0$ and $C_{1} \triangleright A$.

Let A_{1} be the subgroup generated by $\left\{a_{2}, a_{3}, \ldots, a_{k}\right\}$. Clearly $A_{1} \triangleright A$ and $A=C_{1} \oplus A_{1}$. By theorem (6.2.2)(iv), it is sufficient to prove that $C_{1} \cap A_{1}=\{0\}$. An element of C_{1} is of the form $\alpha_{1} b_{1}, \alpha_{1} \in Z, 0 \leq \alpha_{1}<m_{1}$.

Suppose $\alpha_{1} b_{1} \in A_{1}$ then $\alpha_{1} b_{1}=\alpha_{2} a_{2}+\ldots+\alpha_{k} a_{k}$, where $\alpha_{i} \in Z, 2 \leq$ $i \leq k$. Therefore $\alpha_{1} b_{1}-\alpha_{2} a_{2} \ldots-\alpha_{k} a_{k}=0 \Rightarrow \alpha_{i}=0$ by the minimal property of m_{1}. Thus $A=C_{1} \oplus A_{1}$. Now A_{1} cannot be generated by less than $k-1$ elements, for otherwise A would be generated by less than k elements which is a contradiction to minimality of k. By induction of hypothesis $A=C_{2} \oplus C_{3} \oplus \ldots \oplus C_{k}$, where $C_{i}, 2 \leq i \leq k$ are all cyclic groups which are all infinite or for some $j<k, C_{2}, C_{3}, \ldots, C_{j}$ are finite cyclic groups of orders $m_{2}, m_{3}, \ldots, m_{j}$ respectively with $m_{2}\left|m_{3}\right| \ldots \mid m_{j}$ and the remaining $C_{i}, i>j$ are infinite .

Let $C_{i}=\left[b_{i}\right], 2 \leq i \leq k$. Suppose that the order of C_{2} is m_{2} then $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ is a generating set of A and

$$
\begin{equation*}
m_{1} b_{1}+m_{2} b_{2}+0 . b_{3}+\ldots+0 . b_{k}=0 \tag{b}
\end{equation*}
$$

since m_{1} is the least positive integer that occurs as a component in any k tuple in X, by division algorithm $m_{2}=m_{1} q_{2}+r_{2}, 0 \leq r_{2}<m_{1}$. From equation $(7.2 .1(b))$ we get

$$
\begin{equation*}
m_{1} d_{1}+r_{2} b_{2}+0 . b_{3}+\ldots+0 . b_{k}=0 \tag{c}
\end{equation*}
$$

where $d_{1}=b_{1}+q_{2} b_{2}$, here $d_{1} \neq 0$. If $d_{1}=0$ then $C_{1}=C_{2}$ which is a contradiction. Further $\left\{d_{1}, b_{2}, \ldots, b_{k}\right\}$ is a generating set of A. By the minimal property of m_{1} and from equation (7.2.1(c)) we get $r_{2}=0$. Thus $m_{2}=m_{1} q_{1}$ and $m_{1} \mid m_{2}$. Hence the theorem.
7.2.2 Note : If A is a finite abelian group then $C_{1}, C_{2}, \ldots, C_{k}$ are all finite. In this section A denote a finite abelian group written additively.
7.2.3 Theorem : Let A be a finite abelian group then there exists a unique finite list of integer $m_{1}, m_{2}, \ldots, m_{k} \quad($ all $>1)$ such that $|A|=m_{1} m_{2} \ldots m_{k}$ and $m_{1}\left|m_{2}\right| \ldots \mid m_{k}$ and $A=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k}$, where $C_{1}, C_{2}, \ldots, C_{k}$ are cyclic group of A of order $m_{1}, m_{2}, \ldots, m_{k}$ respectively. Consequently $A \simeq Z_{m_{1}} \oplus Z_{m_{2}} \oplus \ldots \oplus Z_{m_{k}}$.

Proof. Given that A is a finite abelian group and hence A is finitely generated. By theorem (7.2.1) A is decomposed as an (internal) direct sum of a finite number of finite cyclic subgroups $C_{i}, 1 \leq i \leq k$ with $\left|C_{i}\right|=m_{i}$ and $m_{1}\left|m_{2}\right| \ldots \mid m_{k}$. We have $A=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k}$ and by the definition of internal direct sum.

$$
C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k} \simeq C_{1} \times C_{2} \times \ldots \times C_{k}
$$

Therefore $|A|=\left|C_{1}\right|\left|C_{2}\right| \ldots\left|C_{k}\right|=m_{1} m_{2} \ldots m_{k}$. Further it is known that every cyclic group of order m is isomorphic to Z_{m}. Hence

$$
A=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k} \simeq Z_{m_{1}} \oplus Z_{m_{2}} \oplus \ldots \oplus Z_{m_{k}}
$$

We now prove the uniqueness of the list $m_{1}, m_{2}, \ldots, m_{k}$.
Suppose $A=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k} \simeq D_{1} \oplus D_{2} \oplus \ldots \oplus D_{l}$ where $C_{i}, 1 \leq i \leq k, D_{j}$, $1 \leq j \leq l$ are all cyclic groups with $\left|C_{i}\right|=m_{i}, m_{1}\left|m_{2}\right| \ldots \mid m_{k}$ and $\left|D_{j}\right|=n_{j}$, $n_{l}\left|n_{2}\right| \ldots \mid n_{l}$. Clearly every element of A is of order $\leq m_{k}$ and D_{l} has an element of order n_{l}, from this we get $n_{l} \leq m_{k}$. Reversing the argument we get $m_{k} \leq n_{l}$. Thus $m_{k}=n_{l}$. Now $m_{k-1} A=\left\{m_{k-1} a \mid a \in A\right\}$ from the above
two decompositions of A, we get

$$
\begin{align*}
m_{k-1} A & =\left(m_{k-1} C_{1}\right) \oplus \ldots \oplus\left(m_{k-1} C_{k-1}\right) \oplus\left(m_{k-1} C_{k}\right) \\
& =\left(m_{k-1} D_{1}\right) \oplus \ldots \oplus\left(m_{k-1} D_{l-1}\right) \oplus\left(m_{k-1} D_{l}\right) \\
\Rightarrow\left|m_{k-1} A\right| & =\left|m_{k-1} C_{1}\right| \ldots\left|m_{k-1} C_{k-1}\right|\left|m_{k-1} C_{k}\right| \\
& =\left|m_{k-1} D_{1}\right| \ldots\left|m_{k-1} D_{l-1}\right|\left|m_{k-1} D_{l}\right| \tag{a}
\end{align*}
$$

we have $m_{i} \mid m_{k-1}, 1 \leq i \leq k-1 \Rightarrow m_{k-1} C_{i}=\{0\}$ and hence $\left|m_{k-1} C_{i}\right|=1$, $1 \leq i \leq k-1$. From the equation (7.2.3(a)) we get

$$
\left|m_{k-1} A\right|=\left|m_{k-1} C_{k}\right|=\left|m_{k-1} D_{1}\right| \ldots\left|m_{k-1} D_{l-1}\right|\left|m_{k-1} D_{l}\right|
$$

since $m_{k}=n_{l}$, note that $\left|m_{k-1} C_{k}\right|=\left|m_{k-1} D_{l}\right|$ and it follows that

$$
1=\left|m_{k-1} D_{1}\right|\left|m_{k-1} D_{2}\right| \ldots\left|m_{k-1} D_{l-1}\right|
$$

Hence $\left|m_{k-1} D_{j}\right|=1, \quad 1 \leq j \leq l-1$. This implies in particular that $m_{k-1} D_{l-1}$ is trivial and m_{k-1} is a multiple of n_{l-1} that is n_{l-1} / m_{k-1}.
By similar argument we get m_{k-1} / n_{l-1} Thus $m_{k-1}=n_{l-1}$. Continuing in this way, using the fact $m_{1} m_{2} \ldots m_{k}=|A|=n_{1} n_{2} \ldots n_{l}$, we get $k=l$ and $m_{i}=n_{i}, 1 \leq i \leq k$. Hence the theorem.

7.3 THE INVARIANT OF A FINITE ABELIAN GROUP

7.3.1 Definition : Let A be a finite abelian group. If $A \simeq Z_{m_{1}} \oplus Z_{m_{2}} \oplus \ldots \oplus$ $Z_{m_{k}}$ where $1<m_{1}\left|m_{2}\right| \ldots \mid m_{k}$ then A is said to be of type $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ and the integers $m_{1}, m_{2}, \ldots, m_{k}$ are called invariants of A.
7.3.2 Remark : Two finite abelian groups are isomorphic iff they are of the same type.
7.3.3 Definition: A partition of a positive integer k is an r-tuple $\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ of positive integers such that $k=k_{1}+k_{2}+\ldots+k_{r}$ and $k_{i} \leq k_{i+1}, 1 \leq i \leq r-1$. The set of partitions of k is denoted by $P(k)$.
7.3.4 Lemma : Let F be the family of non-isomorphic abelian group of order p^{e}, where p is a prime then there is a one-one correspondence between F and the set $P(e)$ of partitions of e.
proof. Let $A \in F$. By theorem (9.4) we have $A \simeq Z_{m_{1}} \oplus Z_{m_{2}} \oplus \ldots \oplus Z_{m_{k}}$, where $1<m_{1}\left|m_{2}\right| \ldots \mid m_{k}$ and determine a unique type $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. Now $|A|=p^{e}=m_{1} m_{2} \ldots m_{k}$ and $1<m_{1}\left|m_{2}\right| \ldots \mid m_{k}$ then $m_{1}=p^{e_{1}}, m_{2}=$ $p^{e_{2}}, \ldots, m_{k}=p^{e_{k}}$ with $e_{1} \leq e_{2} \leq \ldots \leq e_{k}$ and $e_{1}+e_{2}+\ldots+e_{k}=e$. Thus every $A \in F$ determines a partition $\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ of e.

Define a map $\sigma: F \rightarrow P(e)$ by $\sigma(A)=\left(e_{1}, e_{2}, \ldots, e_{k}\right)$. If $B \in F$ and $B \neq A$ then A and B are not isomorphic then they determine different partitions of e, i.e., $\sigma(A) \neq \sigma(B)$. Thus shows that σ is injective.

For every $\left(e_{1}, e_{2}, \ldots, e_{s}\right) \in P(e)$ we have the abelian group

$$
G=Z_{p^{e_{1}}} \oplus Z_{p^{e_{2}}} \oplus \ldots \oplus Z_{p^{e_{s}}} \in F
$$

such that $\sigma(G)=\left(e_{1}, e_{2}, \ldots, e_{s}\right)$. This shows that σ is surjective. Thus there is a one-one correspondence between F and $P(e)$. Hence the lemma.
7.3.5 Lemma : Let A be a finite abelian group of order $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, where $p_{i}(1 \leq i \leq k)$ are distinct primes and $e_{i}>0$ then $A=S\left(p_{1}\right) \oplus S\left(p_{2}\right) \oplus \ldots \oplus$ $S\left(p_{k}\right)$, where $\left|S\left(p_{i}\right)\right|=p_{i}^{e_{i}}$. This decomposition is unique, i.e., if $A=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{k}$ where $\left|H_{i}\right|=p_{i}^{e_{i}}$ then $H_{i}=S\left(p_{i}\right), 1 \leq i \leq k$. Proof. We have A is a finite abelian group and $|A|=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, where
$p_{i}^{\prime} s$ are distinct primes and $e_{i}>0(1 \leq i \leq k)$. On using theorem (9.4) we get $A=A_{1} \oplus A_{2} \oplus \ldots \oplus A_{n}$ where $A_{i}(1 \leq i \leq n)$ are cyclic subgroups of A with the property $1<\left|A_{1}\right| /\left|A_{2}\right| / \ldots /\left|A_{n}\right|$.

Let $\left|A_{i}\right|=p_{1}^{e_{1 i}} p_{2}^{e_{2 i}} \ldots p_{k}^{e_{k i}}$ where $e_{j i}>0,1 \leq j \leq k$, since A_{i} is cyclic group and A_{i} contains unique subgroups $A_{1 i}, A_{2 i}, \ldots, A_{k i}$ of orders $p_{1}^{e_{1 i}}, p_{2}^{e_{2 i}}, \ldots, p_{k}^{e_{k i}}$ respectively. Using the fact $p_{i}^{\prime} s$ are distinct and by Lagranges theorem we get

$$
A_{j i} \cap\left(A_{1 i} \oplus \ldots \oplus A_{(j-1) i} \oplus A_{(j+1) i} \oplus \ldots \oplus A_{k i}\right)=\{0\}
$$

for all $j=1,2, \ldots, k$. Further $A_{j i} \triangleright A_{i}, 1 \leq j \leq k$ and we have $A_{i}=A_{1 i} \oplus A_{2 i} \oplus \ldots \oplus A_{k i}$. Therefore

$$
\begin{aligned}
A & =\left[A_{11} \oplus A_{21} \oplus \ldots \oplus A_{k 1}\right] \oplus\left[A_{12} \oplus A_{22} \oplus \ldots \oplus A_{k 2}\right] \oplus \ldots \oplus\left[A_{1 n} \oplus A_{2 n} \oplus \ldots \oplus A_{k n}\right] \\
\Rightarrow A & =\left[A_{11} \oplus A_{2} \oplus \ldots \oplus A_{1 n}\right] \oplus\left[A_{21} \oplus A_{22} \oplus \ldots \oplus A_{2 n}\right] \oplus \ldots \oplus\left[A_{k 1} \oplus A_{k 2} \oplus \ldots \oplus A_{k n}\right] \\
& =S\left(p_{1}\right) \oplus S\left(p_{2}\right) \oplus \ldots \oplus S\left(p_{k}\right)
\end{aligned}
$$

where $S\left(p_{j}\right)=A_{j 1} \oplus A_{j 2} \oplus \ldots \oplus A_{j n}, 1 \leq j \leq k$ and $\left|S\left(p_{j}\right)\right|=\left|A_{j 1}\right|\left|A_{j 2}\right| \ldots\left|A_{j n}\right|=$ $p_{j}^{e_{j 1}+e_{j 2} \ldots+e_{j n}}=p_{j}^{e_{j}}$. This proves the first part of the theorem.

Suppose $A=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{k}$ where $\left|H_{i}\right|=P_{i}^{e_{i}}, \quad 1 \leq i \leq k$. Clearly each of the subgroups $S\left(P_{i}\right)$ and H_{i} is the subgroup containing all those elements of A whose orders are power of p_{i}. Hence $H_{i}=S\left(P_{i}\right), 1 \leq i \leq k$. This prove the uniqueness of the decomposition of A. Hence the theorem.
7.3.6 Theorem : Let $n=\prod_{j=1}^{k} p_{j}^{e_{j}}$, where p_{j} are distinct primes then the number of non-isomorphic abelian groups of order n is given by $\prod_{j=1}^{k}\left|P\left(e_{j}\right)\right|$.
Proof. Let A_{n} be the family of non isomorphic abelian groups of order n.

Let $A \in A_{n}$ and by lemma 10.6, we have $A=S\left(p_{1}\right) \oplus S\left(p_{2}\right) \oplus \ldots \oplus S\left(p_{k}\right)$, where $\left|S\left(p_{j}\right)\right|=p_{j}^{e_{j}}, 1 \leq j \leq k$. By lemma 10.5 , the number of non isomorphic abelian groups $S\left(p_{j}\right)$ is $\left|P\left(e_{j}\right)\right|$.

Therefore the number of non isomorphic abelian groups of order n is given by $\left|P\left(e_{1}\right)\right|\left|P\left(e_{2}\right)\right| \ldots\left|P\left(e_{n}\right)\right|$. Thus $\left|A_{n}\right|=\prod_{j=1}^{k}\left|P\left(e_{j}\right)\right|$. Hence the theorem. 7.3.7 Example : Find the non-isomorphic abelian groups of orders p, p^{2} and p^{3}, where p is prime number.

Solution. If $n=p^{e}$, where p is prime number then by lemma (10.6), the number of non-isomorphic abelian group of order n is $|P(e)|$, where $P(e)$ is the set of partitions of e. The following may be noted

$$
\begin{aligned}
& P(1)=\{(1)\} \quad \text { and } \quad|P(1)|=1 \\
& P(2)=\{(1,1),(2)\} \quad \text { and } \quad|P(2)|=2 \\
& P(3)=\{(1,1,1),(1,2),(3)\} \text { and }|P(3)|=3
\end{aligned}
$$

(i) The number of non-isomorphic abelian groups of order p is $|P(1)|=1$. Therefore there is only one abelian group of order p of type (p) and it is given by Z_{p}. We know that every group of prime order is cyclic and abelian. Hence there is only one group of order p (up to isomorphism) given by Z_{p}. (ii) The number of non-isomorphic abelian group of order p^{2} is $|P(2)|=2$. Hence there are only two non-isomorphic abelian groups of order p^{2}. They are of type (p, p) and $\left(p^{2}\right)$ given by $Z_{p} \oplus Z_{p}$ and $Z_{p^{2}}$ respectively.
(iii) The number of non isomorphic abelian groups of order p^{3} is $|P(3)|=3$. Hence there are only three non-isomorphic abelian groups of order p^{3}. They are of type $(p, p, p),\left(p, p^{2}\right),\left(p^{3}\right)$ given by $Z_{p} \oplus Z_{p} \oplus Z_{p}, Z_{p} \oplus Z_{p^{2}}$ and $Z_{p^{3}}$ respectively.
7.3.8 Example : Find the non-isomorphic abelian groups of order 360.

Solution. We have $n=360=2^{3} .3^{2} \cdot 5^{1}$
where $e_{1}=3, e_{2}=2, e_{3}=1 p_{1}=2, p_{2}=3, p_{3}=1$ and $|P(3)|=3,|P(2)|=2,|P(1)|=1$

The number of non-isomorphic abelian groups of order 360 is

$$
\begin{aligned}
\prod_{j=1}^{3}\left|P\left(e_{j}\right)\right| & =|P(3)||P(2)||P(1)| \\
& =3 \times 2 \times 1 \\
& =6
\end{aligned}
$$

They are of the types: $(2,2,2,, 3,3,5),(2,2,2,9,5),(2,4,3,3,5)$,

$$
(2,4,9,5), \quad(8,3,3,5), \quad(8,9,5)
$$

The above six types determine the following 6 non isomorphic abelian groups

$$
\begin{array}{r}
Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{3} \oplus Z_{3} \oplus Z_{5} \\
Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{9} \oplus Z_{5} \\
Z_{2} \oplus Z_{4} \oplus Z_{3} \oplus Z_{3} \oplus Z_{5} \\
Z_{2} \oplus Z_{4} \oplus Z_{9} \oplus Z_{5} \\
Z_{8} \oplus Z_{3} \oplus Z_{3} \oplus Z_{5} \\
Z_{8} \oplus Z_{9} \oplus Z_{5}
\end{array}
$$

7.4 Summary

In this lesson we have defined any finitely generated abelian group can be
decomposed as a finite direct sum of cyclic groups and also we have defined the number of non isomorphic abelian groups of a given order

7.5 Model Examination Questions

(1) State and prove fundamental theorem of finitely generated abelian groups.
(2) Let A be a finite abelian group then there exists a unique finite list of integer $m_{1}, m_{2}, \ldots, m_{k}($ all $>1)$ such that $|A|=m_{1} m_{2} \ldots m_{k}$ and $m_{1}\left|m_{2}\right| \ldots \mid m_{k}$ and $A=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{k}$, where $C_{1}, C_{2}, \ldots, C_{k}$ are cyclic group of A of order $m_{1}, m_{2}, \ldots, m_{k}$ respectively. Consequently $A \simeq Z_{m_{1}} \oplus Z_{m_{2}} \oplus \ldots \oplus Z_{m_{k}}$. (3) Let F be the family of non-isomorphic abelian group of order p^{e}, where p is a prime then there is a one-one correspondence between F and the set $P(e)$ of partitions of e.
(4) Let $n=\prod_{j=1}^{k} p_{j}^{e_{j}}$, where p_{j} are distinct primes then the number of nonisomorphic abelian groups of order n is given by $\prod_{j=1}^{k}\left|P\left(e_{j}\right)\right|$.
(5) Find the non-isomorphic abelian groups of order 2020.

7.6 Glossary

Finitely generated abelian group, finite direct sum cyclic groups, Invariants, partition of a integer, partion set, invariants of a finitely generated abelian group.

LESSON-8

CAUCHY'S THEOREM FOR ABELIAN GROUP AND SYLOW THEOREMS

8.1 Introduction : The decomposition of a finite abelian group A as a direct sum of finite number of cyclic groups gives a complete description of the structure A. The sylow's theorems yields a powerful set of tools for studying the structure and the classification of finite groups. we study the existence or non existence of simple group of a given order.Moreover we analyse the groups of order p^{2} and $p q$, where $p \quad q$ are prime numbers.

8.2 Cauchy's theorem for abelian group and first sylow theorem

8.2.1 Definition : p-group Let p be a prime number. A group G is said to be a p-group if the order of every element of G is a power of p.
8.2.2 Example : (i) Z_{4} is a 2-group.
(ii) $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ is a 2-group.
(iii) \mathbf{Z}_{27} is a 3-group.
8.2.3 Definition : p-subgroup A subgroup H of a group G is said to be a p-subgroup of G if the order of every element of H is a power of p, where p is a prime number.
8.2.4 Definition : Sylow p-subgroup Let G be a group and p be a prime number. Let $p^{m} /|G|$ and $p^{m+1} \nmid|G|$ (i.e., p^{m+1} does not divides $|G|$) where $m \in \mathrm{~N}$ then any subgroup of order p^{m} of G is called a Sylow p-subgroup of G (i.e., a maximal p-subgroup of a group G is a Sylow p-subgroup of G).
8.2.5 Lemma : (Cauchy's theorem for abelian group) Let A be a finite abelian group and p be a prime number. If $p /|A|$ (i.e., p divides $|A|$) then A has an element of order p.

Proof. Let A be a finite abelian group. Let $|A|=n$. Let $p /|A|$, where p is
prime number.
Case(i) If $|A|=p$ then A is cyclic group of order p. Let $A=<a>$, where $a \in A \Rightarrow O(a)=p \Rightarrow$ there exists an element $a \in A$ of order p.

Case (ii) Let A be any cyclic group then $p /|A| \Rightarrow|A|=p k$ for some k. Let $a \in A$ then $a^{|A|}=e \Rightarrow a^{p k}=e \Rightarrow\left(a^{k}\right)^{p}=e \Rightarrow O\left(a^{k}\right)=p$.

We shall prove the theorem by induction on $|A|=n$. Let us assume that the theorem is true for all groups whose order is less than $|A|$.

Consider $B=<a^{k}>$, the cyclic group generated by a^{k} of order p then $|B|=p$ where $p<n$. Therefore we have $p /|B|$ and $p<n$ then by induction B has an element of order p. Since $B<A$ then A has an element of order p. Case (iii) Let A is not cyclic group. Suppose there exist $b \neq e$ in A such that $A \neq$ a cyclic group generated by b (Since $b \in A, A \neq$ if $A=$ then A is cyclic group. But given A is not cyclic therefore $A \neq)$.

If $p /|<b\rangle \mid$ then $\langle b\rangle$ has an element of order p by induction. But $<A \Rightarrow A$ is also has an element of order p.

Suppose $p \nmid||$ then consider the quotient group $\frac{A}{}$ then $p /\left|\frac{A}{}\right|$.
But $\left|\frac{A}{}\right|=\frac{|A|}{||}<|A|$ then by induction $\frac{A}{}$ has an element of order p.
Let $\bar{a} \in \frac{A}{}$ be an element of order p then $\bar{a}=a$ for some $a \in A$.
Let $O(a)=k$ then $a^{k}=e$.
Now $(\bar{a})^{k}=(a)^{k}=aa\ldots a(k$ times $)=a^{k}$ $=e=$ which is the identity of $\frac{A}{}$
$\Rightarrow p / k \Rightarrow p /|<a>|$, where $<a>$ is a cyclic subgroup of A generated by $a \in A$. Then by induction $\langle a\rangle$ has an element of order $p \Rightarrow A$ has an element of order p.
8.2.6 Theorem : (First Sylow theorem) Let G be a finite group and let
p be a prime number. If $p^{m} /|G|$ then G has a subgroup of order p^{m}.
Proof. Let $|G|=n$. Given that p is a prime number and p^{m} / n.
We prove the theorem by induction on n. If $n=1$ then the result is trivial. Assume that the result is true for all groups of order less than n
i.e., If H is a finite group of order less than n and $p^{k} /|H|$ then H has a subgroup of order p^{k}.

Consider $\mathbf{Z}(G)$ the centre of G and we have the following two cases.
case(i) Suppose $p /|\mathbf{Z}(G)|$, since $\mathbf{Z}(G)$ is abelian by Cauchy's theorem for abelian group (11.6) there exist an element say $a \in \mathbf{Z}(G)$ of order p.

Now consider the cyclic group C generated by a, i.e., $C=<a>$ where $a \in \mathbf{Z}(G)$ then $C \triangleright G$.

Since $C=<a>=\left\{a^{i} \mid i=1,2, \ldots, p\right\}$, consider for any $g \in G$ we have
$g a^{i} g^{-1}=\left(g a g^{-1}\right)\left(g a g^{-1}\right) \ldots\left(g a g^{-1}\right)(i$ times $)$
$=a^{i} \in C \quad(a \in \mathbf{Z}(G) \Rightarrow g a=a g)$
Consider the quotient group $\frac{G}{C}$, we have $p^{m} /|G| \Rightarrow|G|=p^{m} k$, for some k and $|C|=p \quad($ since $|C|=|a|=p)$
then $\left|\frac{G}{C}\right|=\frac{|G|}{|C|}=\frac{p^{m} k}{p}=p^{m-1} k<|G|$ and also $p^{m-1} /\left|\frac{G}{C}\right|$
then by induction $\frac{G}{C}$ has a subgroup say \bar{H} of order p^{m-1}.
Then there exist a unique subgroup H of G such that $\bar{H}=\frac{H}{C}$
$\Rightarrow|\bar{H}|=\left|\frac{H}{C}\right|=\frac{|H|}{|C|}$
$\Rightarrow|H|=|\bar{H}||C|=p^{m-1} p=p^{m}$
$\Rightarrow G$ has a subgroup of order p^{m}.
Case(ii) Suppose $p \nmid|\mathbf{Z}(G)|$. We have the class equation of G
$n=|G|=|\mathbf{Z}(G)|+\sum_{a}[G: N(a)]$
where the summation runs over one element from each conjugate class having
more than one element, we have $p /|G|$ and $p \nmid|\mathbf{Z}(G)|$
$\Rightarrow p \nmid[G: N(a)]$, for some $a \in G, a \notin \mathbf{Z}(G)$
If $p /[G: N(a)]$ for every a then $p / \sum[G: N(a)]$
$\Rightarrow p /|G|$ and $p / \sum[G: N(a)]$
$\Rightarrow p /|\mathbf{Z}(G)|$ which is a contradiction.
For the above a we have $|G|=|N(a)|[G: N(a)]$ and $p \nmid[G: N(a)]$
$a \notin \mathbf{Z}(G) \Rightarrow|N(a)|=p^{m} l$ for some $l<k$. Therefore $p^{m} /|N(a)|$.
Clearly $|N(a)|<|G|=n$. Hence by induction of hypothesis $N(a)$ has a subgroup H of order p^{m}. Thus G has a subgroup H of order p^{m}.
8.2.7 Corollary : (Cauchy's theorem) Let G be a finite group and p is prime. If $p /|G|$ then G has an element of order p.
Proof. Let G be a finite group such that $p /|G|$ then by first sylow theorem G has a subgroup H of order p.
Since p is prime and $|H|=p \Rightarrow H$ is cyclic.
\Rightarrow every non identity element of H is of order p. Therefore H has $p-1$ elements of order p. But every element of H is an element of G then G has at least $p-1$ elements of order p. Hence the result.
8.2.8 Corollary : A finite group G is a p-group if and only if its order is a power of p.
Proof. Suppose that the order of G is a power of p say p^{m}. For any element $a \in G$, we have $O(a) /|G| \Rightarrow O(a) / p^{m} \Rightarrow O(a)=p^{k}$, for some $k \leq m$.
Thus every element of G has order a power of p. Hence G is a $p-$ group.
Conversely, suppose that G is a p-group i.e. every element of G has order power of p.
Suppose $|G|=p^{m}$ then there is nothing to prove.

Suppose $|G|=q^{n}$, for some prime number $q \neq p$ then $q /|G|$. By Cauchy's theorem G has an element of order $q(\neq p)$ which is a contradiction, since G is a p-group. Therefore the order G is a power of p. Hence the result.
8.2.9 Definition : Let H be a subgroup of a group G then
$N(H)=\left\{g \in G \mid g H g^{-1}=H\right\}$ is called the normalizer of H in G.
8.2.10 Note : (i) $N(H)<G$
(ii) $H \triangleright N(H)$
(iii) $N(H)$ is the largest subgroup of G in which H is normal.
(iv) If K is a subgroup of $N(H)$ then $H \triangleright K H$.
8.2.11 Lemma : Let H and K be subgroups of a group G and $C_{H}(K)=$ $\left\{h K h^{-1} \mid h \in H\right\}$ the set of H-conjugates of K then $\left|C_{H}(K)\right|=[H: N(K) \cap H]$. Proof. Define a mapping $f: C_{H}(K) \rightarrow N(K) \cap H$ by
$f\left(h K h^{-1}\right)=(N(K) \cap H) h$. Clearly f is onto.
Now to prove f is one-one: $f\left(h_{1} K h_{1}^{-1}\right)=f\left(h_{2} K h_{2}^{-1}\right)$

$$
\begin{aligned}
& \Rightarrow h_{1}^{-1} h_{2} \in N(K) \cap H \\
& \Rightarrow h_{1}^{-1} h_{2} \in N(K) \\
& \Rightarrow h_{1}^{-1} h_{2} K h_{2}^{-1} h_{1}=K \\
& \Rightarrow h_{1} K h_{1}^{-1}=h_{2} K h_{2}^{-1}
\end{aligned}
$$

Thus there is one-one correspondence between $C_{H}(K)$ and the set of distinct right cosets of $N(K) \cap H$ in H. Therefore $\left|C_{H}(K)\right|=[H: N(K) \cap H]$.

Hence the lemma.
8.2.12 Theorem : Let G be a finite group and let p be a prime number then all Sylow p-subgroups of G are conjugate and their number n_{p} divides $O(G)$ and satisfies $n_{p} \equiv 1(\bmod p)$.
Proof. (i) Suppose that $|G|=p^{m} q$, where $p \nmid q$ then by first Sylow theorem
G has a subgroup K of order p^{m}, since $p^{m} /|G|$ and $p^{m+1} \nmid|G|$. Let K be a Sylow p-subgroup of G and $C(K)$ be the family of G-conjugates to K
i.e., $C(K)=C_{G}(K)=\left\{g K g^{-1} \mid g \in G\right\}$. By Lemma (8.2.11), we get $|C(K)|=\left|C_{G}(K)\right|=[G: N(K) \cap G]=[G: N(K)]$, since $N(K)$ is a subgroup of G).

Given G is finite then $|C(K)|=|G| /|N(K)|$. It may be seen that $p^{m} /|N(K)|$.
Since $N(K)$ is the largest subgroup of G in which K is normal and $|K|=p^{m}$. Therefore

$$
\begin{equation*}
p \nmid(|G| /|N(K)|) \Rightarrow p \nmid|C(K)| \tag{a}
\end{equation*}
$$

Let H be any Sylow p-subgroup of G. We shall show that H is conjugate to K. Now the set $C(K)$ is an H-set by conjugation. For any $L \in C(K)$, let $C_{H}(L)=\left\{h L h^{-1} \mid h \in H\right\}$ the orbit of L.
Now $C_{H}(L)=\left\{h g K g^{-1} h^{-1} \mid g \in G, h \in H\right\}$
$\Rightarrow C_{H}(L) \subset C_{G}(K)=C(K)$ and

$$
\begin{equation*}
\left.C(K)=\bigcup_{L \in C(K)} C_{H}(L) \quad(\text { a partition })\right) \tag{b}
\end{equation*}
$$

where the union runs over one element L from each conjugate class $C_{H}(L)$ (orbit). By Lemma (8.2.11), since H is a Sylow p-subgroup of order p^{m}

$$
\begin{equation*}
\left|C_{H}(L)\right|=[H: N(L) \cap H]=p^{e}, \quad e \geq 0 \tag{c}
\end{equation*}
$$

Claim $P^{e}=1 \Leftrightarrow H=L$
If $H=L$ then $p^{e}=[L: N(L) \cap L]=[L: L]=1$.
Conversely suppose that $p^{e}=1 \Rightarrow H=N(L) \cap H \Rightarrow H \subset N(L)$
$\Rightarrow H L=L H \Rightarrow H L$ is a subgroup of G.
Further $H \subset N(L) \Rightarrow L \triangleright H L$. (by Note (8.2.10) (iv))
By second isomorphism theorem $\frac{H L}{L} \simeq \frac{H}{H \cap L}$
$\Rightarrow\left|\frac{H L}{L}\right|=\frac{H}{H \cap L}=p^{f} \quad(f \geq 0)$.
If $f>0$ then $|H L|>|L|=p^{m}$ and $\frac{|H L|}{|G|}$ this is not possible.
Therefore $f=0 \Rightarrow H L=L \Rightarrow H \subset L \Rightarrow H=L$, since $|H|=|L|=p^{m}$. Hence the claim

From the equations (8.2.12(b)) and (8.2.12(c)) we get

$$
\begin{equation*}
|C(K)|=\sum p^{e} \tag{d}
\end{equation*}
$$

From the equation (8.2.12(a)), we have that p does not divide $|C(K)|$. This implies that there should be atleast one term p^{e} is 1 in $\sum p^{e}$. This shows that $e=0$ atleast once in the summation. By our claim above $H=L$, where $L \in C(K)$ i.e., L is conjugate of K and hence H is conjugate to K. Thus any two Sylow p-subgroups of G are conjugate. This proves the second Sylow theorem.
(ii) We have proved in (i) that any Sylow p-subgrop of G is conjugate to K. Therefore n_{p}, the number of Sylow p-subgroups of G is given by $|C(K)|$ and

$$
\begin{equation*}
n_{p}=|C(K)|=|G| /|N(K)| \tag{e}
\end{equation*}
$$

This shows that n_{p} divides $|G|$.

From the above claim, it is clear that there is only one term in $\sum p^{e}$ is 1 . Therefore from the equations (8.2.12(d)) and (8.2.12(e)) we get

$$
\begin{gathered}
n_{p}=\sum_{e \geq 0} p^{e}=1+\sum_{e>0} p^{e}=1+k p \\
\Rightarrow n_{p} \equiv 1(\bmod p)
\end{gathered}
$$

This proves the third Sylow theorem. Hence the theorem.

8.3 Applications of Sylow theorems

8.3.1 Corollary : A Sylow p-subgroup of a finite group is unique if and only if it is normal.

Proof. Let G be a finite group of order $p^{m} q$, where p is a prime number and $p \nmid q$. Let K be a Sylow p-subgroup of G then
K is unique $\Leftrightarrow n_{p}=1$

$$
\begin{aligned}
& \Leftrightarrow|C(K)|=1 \\
& \Leftrightarrow g K g^{-1}=K \quad \forall \quad g \in G \\
& \Leftrightarrow K \triangleright G
\end{aligned}
$$

Hence the result.
8.3.2 Example : If d is a divisor of n, the order of a finite abelian group A then A contains a subgroup of order d.

Solution. Given a finite abelian group A of order n and d / n.
Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, where p_{i} 's are distinct primes and $e_{i}>0$.
Then by Lemma (7.3.5) we get

$$
A=S\left(p_{1}\right) \oplus S\left(p_{2}\right) \oplus \ldots \oplus S\left(p_{k}\right)
$$

where $\left|S\left(p_{i}\right)\right|=p_{i}^{e_{i}}, 1 \leq i \leq k$.
Let $d=p_{1}^{f_{1}} p_{2}^{f_{2}} \ldots p_{k}^{f_{k}}$, since $p_{i}^{f_{i}}$ divides $p_{i}^{e_{i}}$, then by first Sylow theorem $S\left(p_{i}\right)$ has a subgroup $S^{\prime}\left(p_{i}\right)$ of order $p_{i}^{f_{i}}, \quad 1 \leq i \leq k$
Now, it may be seen that $B=S^{\prime}\left(p_{1}\right) \oplus S^{\prime}\left(p_{2}\right) \oplus \ldots \oplus S^{\prime}\left(p_{k}\right)$ is a subgroup of A of order d.
8.3.3 Example : Prove that every group of order $2 p$ must have a normal subgroup of order p, where p is prime number.

Solution. Let G be a group of order $2 p$, where p is a prime. Since $\left.p\right|_{|G|}$ then by first Sylow theorem G has subgroup H of order p. Since $[G: H]=2$ then $H \triangleright G$. Thus G has a normal subgroup of order p.
8.3.4 Example : If a group G of order p^{n} (p is a prime) contains exactly one subgroup of orders $p, p^{2}, \ldots, p^{n-1}$ then G is cyclic group.

Solution. Given a group G and $|G|=p^{n}$, where p is a prime and n is positive integer. By first Sylow's theorem G has a subgroup H of order p^{n-1}.

Again by first Sylow theorem H has subgroups of orders $p, p^{2}, \ldots, p^{n-2}$. Since G has exactly one subgroup each of orders $p, p^{2}, \ldots, p^{n-1}$ then all proper subgroups of G are subgroups of H.

Let $a \in G$ and $a \notin H$. Suppose $O(a)<p^{n}$ then a generates a proper subgroup K of order less that p^{n}. Hence $K \subset H$ and there by $a \in H$ which is a contradiction. Therefore $O(a)=p^{n}$ and $G=[a]$. Hence the result.
8.3.5 Example : If H is normal subgroup of a finite group G and if the index of H in G is prime to p then H contains every Sylow p-subgroup of G.
Sol. Let $|G|=p^{m} q,(p, q)=1$. Given $H \triangleright G$ and $([G: H], p)=1$
$\Rightarrow\left(\frac{|G|}{|H|}, p\right)=1 \Rightarrow|H|=p^{m} q_{1}, \quad\left(p, q_{1}\right)=1$
By first Sylow theorem H has a Sylow p-subgroup K, where $|K|=p^{m}$.

Now K is also a Sylow p-subgroup of G.
Let L be any Sylow p-subgroup of G then by second Sylow theorem L is conjugate to K.

Let $L=g K g^{-1}$ for some $g \in G$ then $L=g K g^{-1} \subset g H g^{-1}=H \quad$ (since $H \triangleright G$).
Thus all Sylow p-subgroups of G are contained in H. Hence the result.
8.3.6 Example : Every group of order $p^{2} q$, where p, q are distinct primes, contains a normal Sylow p-subgroup and it is solvable.
Solution. Let G be a group and $|G|=p^{2} q$ where p, q, are distinct primes. By first Sylows theorem G has a Sylow p-subgroup and a Sylow q-subgroup. Case (i) Let $p>q$. The number n_{p} of Sylow p-subgroup of G is given by $n_{p}=1+k p$, where k is a non negative integer and $(1+k p) / q$.
Now $1+k p=1 \quad$ since $p>q \Rightarrow n_{p}=1$. Therefore G has a unique Sylow p-subgroup H of G of order p^{2}. Hence $H \triangleright G$.
Case (ii) Let $p<q$. The number n_{q} of Sylow q-subgroups of G is given by $n_{q}=1+k q$ and $(1+k q) / p^{2}$.
$\Rightarrow 1+k q=1, p$ or p^{2}.
If $1+k q=1$ then G has a unique Sylow q-subgroup L of order q and $L \triangleright G$.
Suppose $1+k q \neq 1$ then $1+k q \neq p$, since $q>p$.
Thus $1+k q=p^{2}$ i.e., there are p^{2} Sylow q-subgroups each of order q in G.
Hence G has $p^{2}(q-1)$ distinct non identity elements of order q and G has $p^{2} q-p^{2}(q-1)=p^{2}$ elements which are not of order q. These p^{2} elements must be the elements of a Sylow p-subgroup of G. This shows that G ha a unique Sylow p-subgroup H of order p^{2} and hence $H \triangleright G$

In any case G has either a normal Sylow p-subgroup H of order p^{2} or a normal Sylow q-subgroup L of order q. This proves the first part.

If G has a subgroup H then $\{e\} \subset H \subset G$ is a normal series whose factors are H and $\frac{G}{H}$ which are abelian (since every group of order p^{2} and p are abelian). Hence G is solvable.

If G has a subgroup L then $\{e\} \subset L \subset G$ is a normal series whose factors are abelian. Hence G is solvable in this case also. In any case G is solvable.
8.3.7 Example : Prove that there are only two non abelian groups of order 8.

Solution. Let G be a non abelian group and $|G|=8$.
If G contains an element of order 8 then G is cyclic and abelian which is a contradiction.

If every element of G is of order 2 then G is abelian which is a contradiction.

Therefore G has an element a of order 4 . Let $b \in G$ such that $b \notin[a]$ then $G=[a] \cup[a] b$.
If $b^{2} \in[a] b$ then $b \in[a]$ which is a contradiction. Therefore $b^{2} \in[a]$.
If $b^{2}=a^{2}$ or a^{3} then $O(b)=8$ and G becomes abelian which is a contradiction. Thus $b^{2}=e$ or a. Since $[a]$ is of index 2 in $G,[a] \triangleright G$. Hence $b^{-1} a b \in[a]$.

Since $O\left(b^{-1} a b\right)=O(a)=4$, we have either $b^{-1} a b=a$ or a^{3}.
If $b^{-1} a b=a$ then $a b=b a$ and G is abelian which is contradiction. Thus $b^{-1} a b=a^{3}$

Thus we have two non abelian groups of order 8 .
(i) $G_{1}=[a, b]$ with defining relations $a^{4}=e, b^{2}=e, \quad b^{-1} a b=a^{3}$.
(ii) $G_{2}=[a, b]$ with defining relations $a^{4}=e, \quad b^{2}=a^{2}, \quad b^{-1} a b=a^{3}$.

The first is the octic group and the second is the quaternion group. It may be
seen that the quaternion group contains only one element of order 2 , where as the octic group has more than one element of order 2.

Therefore G_{1} and G_{2} are non isomorphic. Hence the result.
8.3.8 Note : (i) We have already seen that there are only three abelian groups of order 8 . They are of types $(2,2,2),(2,4)$, (8).
The following are the non isomorphic abelian groups of order 8 .

$$
Z_{2} \oplus Z_{2} \oplus Z_{2}, \quad Z_{2} \oplus Z_{4}, \quad Z_{8}
$$

(ii) There are five groups of order 8 upto isomorphism. Three of them are abelian and the remaining two are non abelian (octic and quaternion)
8.3.9 Example : Prove that there are no simple groups of orders 63,56 and 36 .

Solution. Let G be a group of given order .
(i) Given $|G|=63=3^{2} .7$

By first Sylow theorem G has a Sylow 3 -subgroup of order 9 and a Sylow 7-subgroup of order 7. By third Sylow theorem n_{p} the number of Sylow psubgroups of G divides $|G|$ and $n_{p}=1+k p$.

Therefore $n_{7}=1+7 k$ and $(1+7 k) / 3^{2} .7$

$$
\begin{aligned}
& \Rightarrow(1+7 k) / 3^{2} \\
& \Rightarrow(1+7 k) / 9 \\
& \Rightarrow k=0
\end{aligned}
$$

Thus $n_{7}=1$ and hence G has unique Sylow 7 -subgroup H and $H \triangleright G$. Thus G is not simple, since it has a normal subgroup of order 7 .
(ii) Given $|G|=56=2^{3} .7$

By first Sylow theorem G has a Sylow 2-subgroup of order 8 and a Sylow 7-subgroup of order 7. By third Sylow theorem n_{7} the number of Sylow 7-
subgroups of G divides $|G|$ and $n_{7}=1+7 k$.
$\Rightarrow(1+7 k) / 8$
$\Rightarrow k=0$ or $k=1$
$\Rightarrow n_{7}=1$ or 8 .
If $n_{7}=1$ then G has a normal subgroup of order 7 and G is not simple.
Suppose $n_{7}=8$ then G has eight Sylow 7 -subgroups of order 7 and each Sylow 7-subgroup has $7-1=6$ elements of order 7 . Therefore there are $8(7-1)=8(6)=48$ elements of order 7 and the remaining elements $56-48=8$ elements must form a unique Sylow 2-subgroup.

Since G has normal subgroup of order 8 then G is not simple in this case also. Hence the result.
(iii) Given $|G|=36=2^{2} .3^{2}$

The number of Sylow 3 -subgroups $n_{3}=1+3 k$ divides $|G|=2^{2} .3^{2}$.
Thus $(1+3 k) / 2^{2} \Rightarrow k=0$ or $1 \Rightarrow n_{3}=1$ or 4 .
If $n_{3}=1$ then G has unique subgroup of order $3^{2}=9$. Therefore G has a normal subgroup of order $3^{2}=9$ and G is not simple.

If $n_{3}=4$ then G has four Sylow 3-subgroups of order 9 and each Sylow 3subgroup has $3^{2}-1=8$ elements of order 3 . Therefore there are $4\left(3^{2}-1\right)=32$ elements of the Sylow 3-subgroups and the remaining 36-32 $=4$ elements must form a unique Sylow 2-subgroup of order 4. Thus G has a normal subgroup of order 4 and G is not simple in this case also. Hence the result.

Alternative Method : Given $|G|=2^{2} .3^{2}$. By the first Sylow theorem G has a Sylow 3- subgroup H of order 9. Since $[G: H]=4$ then there exist a homomorphism $\phi: G \rightarrow S_{4}$ with $\operatorname{ker} \phi=\bigcap_{x \in G} x H x^{-1}$.
If $\operatorname{ker} \phi=\{e\}$ then ϕ is one-one and $G \subset S_{4} \Rightarrow G$ is isomorphic to a subgroup
of S_{4}. This is not possible, since $|G|=36$ and $\left|S_{4}\right|=24$.
Now $\operatorname{ker} \phi=\bigcap_{x \in G} x H x^{-1} \neq G$ and $\operatorname{ker} \phi \triangleright G$. Thus G has nontrivial normal subgroup and G is not simple. Hence the result.
8.3.10 Example : Prove that a group of order 108 has a normal subgroup of order 27 or 9 . i.e., there is no simple group of order 108.
Solution. Let G be a group and $|G|=108=2^{3} .3^{3}$.
The number of Sylow 3 -subgroups is $n_{3}=1+3 k$ and $(1+3 k) / 2^{2} .3^{2}$
$\Rightarrow(1+3 k) / 2^{2}$
$\Rightarrow k=0$ or 1
If $k=0$ then $n_{3}=1$ and hence G has a unique Sylow 3-subgroup of order 27 then by Example (13.2), we have H is normal in G. Thus G has normal subgroup of order 27.

Suppose $k=1$ then $n_{3}=4$ and G has four Sylow 3-subgroups of order 27.
Let H and K be any two distinct Sylow 3 -subgroups of G, we have

$$
\begin{aligned}
|H K|=\frac{|H||K|}{|H \cap K|} & =\frac{27(27)}{|H \cap K|} \leq 108 \\
& \Rightarrow|H \cap K| \geq \frac{27}{4}
\end{aligned}
$$

Further $|H \cap K| / 27$. Since H and K are distinct we must have $|H \cap K|=9$. Now $|H \cap K| \triangleright H$ and $|H \cap K| \triangleright K$ (since every subgroup of order p^{n-1} is normal in a group G of order $\left.p^{n}\right)$.
Consider $N(H \cap K)$. Now $H \subset N(H \cap K)$ and $K \subset N(H \cap K)$
Since $N(H \cap K)$ is the largest subgroup of G in which $H \cap K$ is normal.

Therefore $H K \subset N(H \cap K)$. Note that

$$
|N(H \cap K)| \geq|H K|=\frac{|H||K|}{|H \cap K|}=\frac{27(27)}{9}=81
$$

Further by Lagrange's theorem we get $|N(H \cap K)| /|G|$
$\Rightarrow|N(H \cap K)|=108=|G|$ and $N(H \cap K)=G$. Hence $H \cap K \triangleright G$.
Thus G has a normal subgroup of order 9 and G is not simple group.

8.4 Groups of order $p q$, where p, q are primes and $q>p$:

Let G be a finite group and $|G|=p q$, where p, q are prime numbers and $q>p$. By first Sylow theorem G has Sylow p-subgroup of order p and a Sylow q-subgroup of order q.

By third Sylow theorem n_{q} the number of Sylow q-subgroup of order q is given by $n_{q}=1+\lambda q$, where λ is a non-negative integer and $(1+\lambda q) \mid p$. If $\lambda>0$ then $1+\lambda q>p($ since $q>p)$ and hence $(1+\lambda q) \nmid p \Rightarrow \lambda=0$ and $n_{q}=1$. Therefore G has unique Sylow q-subgroup K of order q and $K \triangleright G$. Since q is prime then K is cyclic.

Let $K=[b]$, where $b^{q}=1=e$. Further n_{p} the number of Sylow p subgroups of order p is given by $n_{p}=1+\mu p$ and $(1+\mu p) \mid q$. Since q is prime, we must have either $1+\mu p=1$ or $1+\mu p=q \Rightarrow 1+\mu p=1$ or $q \equiv 1(\bmod p)$. Therefore we consider the following two cases:
case(i) suppose $1+\mu p=1$ then $n_{p}=1$. Therefore G has a unique Sylow p-subgroup H of order p and $H \triangleright G$. Since p is prime then H is cyclic group. Let $H=[a]$, where $a^{p}=e$. Clearly $H \cap K$ is trivial. Therefore $h k=k h \forall$ $h \in H, k \in K$. Now $a b \in G$ and $O(a b)=p q . \Rightarrow G=[a b]$ and G is cyclic. case(ii) Suppose $q \equiv 1(\bmod p)$ then $n_{p}=1+\mu p=q$ and G has q Sylow p-subgroups of order p. Since p is prime then they are cyclic groups. Let
$H=[a]$ be one of the Sylow p-subgroups of G, where $a^{p}=e$ then $[a, b]$ is the group generated by a and b, contains both H and K. Hence both $|H|$ and $|K|$ divides $|[a, b]| \Rightarrow|[a, b]|=p q$ and $G=[a, b]$.

We have $K \triangleright G$ then $a^{-1} b a=b^{r}$, for some integer r.
If $r \equiv 1(\bmod q)$ then $r=1+k q$ and $a^{-1} b a=b^{r}=b^{1+k q}=b \Rightarrow a b=b a \Rightarrow G$ is abelian. $\Rightarrow n_{p}=1$ which is a contradiction. This shows that $r \not \equiv 1(\bmod q)$. Thus $G=[a, b]$ with the following relations:

$$
\begin{equation*}
a^{p}=1=b^{q}, a^{-1} b a=b^{r}, r \not \equiv 1(\bmod q) \tag{a}
\end{equation*}
$$

We have $a^{-1} b a=b^{r} \Rightarrow\left(a^{-1} b a\right)^{2}=b^{2 r} \Rightarrow a^{-1} b^{2} a=b^{2 r}$. By induction we get $a^{-1} b^{r} a=b^{r^{2}}$. Further $a^{-1} b a=b^{r} \Rightarrow a^{-1}\left(a^{-1} b a\right) a=a^{-1} b^{r} a=b^{r^{2}} \Rightarrow$ $a^{-2} b a^{2}=b^{r^{2}}$. By induction we get $a^{-p} b a^{p}=b^{r^{p}} \Rightarrow b=b^{r^{p}} \quad\left(\right.$ since $\left.a^{p}=1\right)$
$\Rightarrow r^{p} \equiv 1(\bmod q) \quad($ since $O(b)=q)$
The integer r in the equation (14.2(a)) is a solution of the congruence equation

$$
\begin{equation*}
Z^{p} \equiv 1(\bmod q) \tag{b}
\end{equation*}
$$

Conversely, if r is a solution of the equation (14.2(b)) then the defining relation equation (14.2(a)) determine a group consisting $p q$ elements $a^{j} b^{j}, \quad 0 \leq$ $i \leq p-1, \quad 0 \leq j \leq q-1$.

We have $r^{p} \equiv 1(\bmod q) \Rightarrow r^{p} r^{p} \equiv 1(\bmod q) \Rightarrow\left(r^{2}\right)^{p} \equiv 1(\bmod q)$. Therefore r^{2} is a solution of equation (14.2(b)). By induction, it may be seen that r^{j} is a solution of equation (14.2(b)), $2 \leq j \leq p-1$ and they all give rise to the same group, because replacing a by a^{j} as a generator of H replaces r by r^{j}.

It may be seen that the condition in case(i) $1+\mu p=1$ is independent
of p and q. Hence a cyclic group of order $p q$ always exists. If $q>p$ and $q \equiv 1(\bmod p)$ then a non-abelian group $G=[a, b]$ also exists, besides the cyclic group of order $p q$ with the following defining relations.

$$
\begin{equation*}
a^{p}=1=b^{q}, a^{-1} b a=b^{r}, r \not \equiv 1(\bmod q), r^{p} \equiv 1(\bmod q) \tag{c}
\end{equation*}
$$

From the above discussion we conclude the following:
There are atmost two groups G of order $p q$, where p, q are prime numbers and $q>p$.
(i) The cyclic groups G of order $p q$.
(ii) The non-abelian group $G=[a, b]$ with the defining relations given in the equation $(8.4(\mathrm{c}))$, if $q \equiv 1(\bmod p)$.
8.4.1 Note : (i) If $q \not \equiv 1(\bmod p)$ then there exist only one cyclic group of order $p q$.
(ii) If $q \equiv 1(\bmod p)$ then there exist two non-isomorphic group of order $p q$.
8.4.2 Remark : If p, q are prime numbers and $q>p$ then every group G of order $p q$ has a unique Sylow q-subgroup of order q and this subgroup is normal in G. Hence there is no group of order $p q$ is simple (if $q>p$).
8.4.3 Example : (i) Every group order 15, 35 are cyclic.
(ii) There are no simple groups of order 15 and 35 .

8.5 Groups of order p^{2}, where p is prime number.

We know that every group of order p^{2} is abelian and there are only two abelian groups of order p^{2}. Therefore there are only two group of order p^{2}.
(i) The abelian group of type (p, p) and it is $\mathbf{Z}_{p} \oplus \mathbf{Z}_{p}$.
(ii) The abelian group of type $\left(p^{2}\right)$ and it is $\mathbf{Z}_{p^{2}}$.

8.6 Summary

In this lesson we have defined of p-group, p-subgroup and sylow p-group. Also we have proved Cauchy's theorem for abelian group and first, second and third sylow theorems. Further we have proved the applications of sylow theorems and we have discussed the groups of order $p q$ and groups of order p^{2}, where p, q are prime numbers.

8.7 Model Examination Questions

(1) Let G be a finite group and p is prime. If $p /|G|$ then G has an element of order p.
(2) Let G be a finite group and let p be a prime number. If $p^{m} /|G|$ then G has a subgroup of order p^{m}.
(3) Let G be a finite group and p is prime. If $p /|G|$ then G has an element of order p.
(4) A finite group G is a p-group if and only if its order is a power of p.
(5) Let G be a finite group and let p be a prime number then all Sylow p-subgroups of G are conjugate and their number n_{p} divides $O(G)$ and satisfies $n_{p} \equiv 1(\bmod p)$.
(6) Prove that a group of order 1986 is not simple.
(7) If the order of a group is 42. Prove that its Sylow 7 -subgroup is normal.
(8) Let G be a group then prove that $\left|\frac{G}{Z(G)}\right| \neq 77$.
(9) Show that a group of order $p^{2} q$, where p and q are distinct primes, must contain a normal Sylow subgroup and be solvable.

8.8 Glossary

p-group, p-subgroup, sylow p-group, Cauchy's theorem and sylow theorem, Conjugate subgroups, sylow p-subgoup, unique normal subgroup, simple group, cyclic group.

UNIT-III

LESSON-9

IDEALS OF RINGS

9.1 Introduction : In this lesson, we study the ideals of rings, principal ideal ring and quotient ring.

9.2 Ideals of Rings

9.2.1 Definition : A non empty subset S of a ring R is called an ideal (two sided ideal) of R if (i) $a-b \in S \forall a, b \in S$.
(ii) $a r \in S$ and $r a \in S \quad \forall r \in R, a \in S$.
9.2.2 Definition : A non empty subset S of a ring R is called a right (left) ideal if (i) $a-b \in S \quad \forall a, b \in S$.
(ii) $a r \in S(r a \in S) \quad \forall r \in R, a \in S$.
9.2.3 Property : Prove that every ideal of a ring R is a subring of R.

Proof. Let S be an ideal of R then $a-b \in S \quad \forall a, b \in S$.
Also $a \in S, b \in S \Rightarrow a \in S$ and $b \in R \quad(S \subset R)$
$\Rightarrow a b \in S \quad($ since $a r \in S) . \quad$ Therefore S is a subring of R.
9.2.4 Note : Converse of the above property need not be true.
9.2.5 Example : Prove that $S=(Z,+,$.$) is a subring of R=(Q,+,$.$) ,$ but not an ideal of $R=(Q,+,$.$) .$
Sol. S is a subring of R but S is not an ideal of R because ar $\notin S$ for $r \in R$, $a \in S$, since $r=\frac{1}{3}, a=2 \Rightarrow a r=\frac{2}{3} \notin S$.
9.2.6 Note : (i) Every ideal is both right and left ideal.
(ii) In a commutative ring every right or left ideal is a two sided ideal.
(iii) Every ring R has at least two ideals $\{0\}$ and R itself then these two ideals are called trivial ideals of R. If R has any ideal other than these two
then they are called proper ideals of R.
9.2.7 Example : Prove that every subring of the ring of integers $(Z,+,$. is an ideal of $(Z,+,$.$) .$
Sol. Let S be a subring of Z. For any $a, b \in S \Rightarrow a-b \in S$
Let $r \in Z$ and $a \in S$ then

$$
\begin{aligned}
r a & =a+a+\cdots+a(r \text { times }) \text { if } r>0 \\
& =0 \quad \text { if } r=0 \\
& =(-a)+(-a) \cdots+(-a)(r \text { times }) \text { if } r<0
\end{aligned}
$$

Since S is a subring we have for any $a \in S$
$a+a+\ldots+a(r$ times $) \in S$ (by closure of addition) and $0 \in S$,
$(-a)+(-a)+\ldots+(-a) \in S \Rightarrow r a \in S \quad \forall r \in Z, a \in S$
Similarly ar $\in S \forall r \in Z, a \in S$. Therefore S is an ideal of Z.
9.2.8 Example : Prove that the right as well as left ideals of a division ring are trivial ideals only.

Proof. Let D be a division ring. Let I be any ideal of D.
If $I=\{0\}$ then there is nothing to prove.
Let $I \neq 0$. Let a be any nonzero element of $I \Rightarrow a \in D \Rightarrow a^{-1} \in D$
We have $a \in I, a^{-1} \in D \Rightarrow a a^{-1} \in I \quad(I$ is an ideal)

$$
\Rightarrow 1 \in I
$$

For any $r \in D$ we have $1 r \in I \Rightarrow r \in I$
Therefore $D \subset I$, but we have $I \subset D$. Hence $I=D$
$\therefore D$ has only trivial ideals.
9.2.9 Example : Let R be a ring and $a \in R$ then $a R=\{a x: x \in R\}$ is a right ideal of R and $R a=\{x a: x \in R\}$ is left ideal of R.

Sol. (i) $a R=\{a x: x \in R\}$

$$
0 \in R \Rightarrow a 0=0 \in a R . \quad \therefore a R \text { is a nonempty subset of } R
$$

Let $a x_{1}, a x_{2}$ be any two elements of R, where $x_{1}, x_{2} \in R$
$\Rightarrow a x_{1}-a x_{2}=a\left(x_{1}-x_{2}\right) \in a R \quad\left(x_{1}-x_{2} \in R\right)$
Let $r \in R$ and $a x_{1} \in a R$ then $\left(a x_{1}\right) r=a\left(x_{1} r\right) \in a R \quad\left(x_{1} r \in R\right)$
$\therefore a R$ is a right ideal of R. Similarly $R a$ is a right ideal of R.
9.2.10 Note : (i) If R is commutative then $a R$ is an ideal of R.
(ii) If R has unity then $a=a 1 \in a R$
(iii) $a R$ is the smallest ideal of R containing a.

Suppose $a_{1} R$ is another ideal of R containing a. Let ar be any element of $a R$ we have $a \in a_{1} R$ and $r \in R \Rightarrow a r \in a_{1} R \quad\left(a_{1} R\right.$ is an ideal $)$ $\Rightarrow a R \subset a_{1} R . \therefore a R$ is the smallest ideal of R containing a.

9.3 Rings of Matrices

9.3.1 Rings of Matrices : Let R be a ring and R_{n} be the set of all $n \times n$ matrices whose elements are from R then R_{n} forms a ring with respect matrix addition and matrix multiplication.

In general if $A, B \in R_{n}$ where $n>1$ then $A B \neq B A$
\therefore For $n>1, R_{n}$ is a non commutative ring. Also R_{n} is not an integral domain because R_{n} has nonzero divisors, $A \neq 0, B \neq 0 \Rightarrow A B=0$

Suppose R has unity we denote by $e_{i j}$ the matrices in R_{n} whose (i, j) entry is 1 and whose other entries are zeroes.
i.e. In R_{3} consider $e_{11}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), e_{12}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ etc.

The $e_{i j}{ }^{\prime} s, 1 \leq i, j \leq n$ are called matrix units.
From the definition of multiplication of matrices, it follows that

$$
\begin{aligned}
& e_{i j} e_{k l}=0 \text { if } j \neq k \\
& \quad=e_{i l} \text { if } j=k \quad \text { i.e. } e_{i j} e_{k l}=\delta_{j k} e_{i l}
\end{aligned}
$$

where $\delta_{j k}=0$ if $j \neq k$

$$
=1 \text { if } j=k \text {, is called the Kronecker delta. }
$$

In R_{3}, consider $e_{11}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), e_{23}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right), e_{13}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
then

$$
\begin{gathered}
e_{11} e_{23}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
e_{11} e_{13}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=e_{13}
\end{gathered}
$$

Also if $A=\left(a_{i j}\right) \in R_{n}$ then A can be uniquely expressed as a linear combination of $e_{i j}{ }^{\prime} s$ over R i.e., $A=\sum_{1 \leq i, j \leq n} a_{i j} e_{i j}, \quad a_{i j} \in R$.
For example $A=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ then

$$
\begin{aligned}
A & =\sum_{1 \leq i, j \leq 3} a_{i j} e_{i j} \\
& =a_{11} e_{11}+a_{12} e_{12}+a_{13} e_{13}+a_{21} e_{21}+a_{22} e_{22}+a_{23} e_{23}+a_{31} e_{31}+a_{32} e_{32}+a_{33} e_{33} \\
& =\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & a_{12} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\ldots+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & a_{33}
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Let S be the set of $n \times n$ matrices in which all the entries below diagonal are zero
i.e., Let S consist of matrices $\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ 0 & a_{22} & \ldots & a_{2 n} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \ldots & a_{n n}\end{array}\right], a_{i j} \in R$.
then S is a ring with the usual addition and multiplication of matrices and is called the ring of upper triangular matrices. Similarly we have the ring of lower triangular matrices.
9.3.2 Example : Let R be the $n \times n$ matrix ring over a field F, for any $1 \leq i \leq n$. Let A_{i} (or B_{i}) be the set of matrices in R having all rows(columns) except possibly the $i^{\text {th }}$ row(column) zero then A_{i} is a right ideal and B_{i} is a left ideal in R.
Sol. $A_{i}=\left\{\left.\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \cdot & \cdot & \cdot & \cdot \\ a_{i 1} & a_{i 2} & \ldots & a_{i n} \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \ldots & 0\end{array}\right) \right\rvert\, a_{i j} \in F\right\}$

Let $A=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \cdot & \cdot & \cdot & \cdot \\ a_{i 1} & a_{i 2} & \ldots & a_{i n} \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \ldots & 0\end{array}\right), B=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \cdot & \cdot & \cdot & \cdot \\ b_{i 1} & b_{i 2} & \ldots & b_{i n} \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \ldots & 0\end{array}\right)$ be any
two elements of $A_{i}, a_{i j}, b_{i j} \in F$
$A-B=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \cdot & \cdot & \cdot & \cdot \\ a_{i 1}-b_{i 1} & a_{i 2}-b_{i 2} & \ldots & a_{i n}-b_{i n} \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \ldots & 0\end{array}\right)$, where $a_{i j}-b_{i j} \in F$ $\Rightarrow A-B \in A_{i}$
Let $r=\left(\begin{array}{cccc}r_{11} & r_{12} & \ldots & r_{1 n} \\ \cdot & \cdot & \cdot & \cdot \\ r_{i 1} & r_{i 2} & \ldots & r_{i n} \\ \cdot & \cdot & \cdot & \cdot \\ r_{n 1} & r_{n 2} & \ldots & r_{n n}\end{array}\right) \in R$ then
$A r=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \cdot & \cdot & \cdot & \cdot \\ a_{i 1} & a_{i 2} & \ldots & a_{i n} \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \ldots & 0\end{array}\right)\left(\begin{array}{cccc}r_{11} & r_{12} & \ldots & r_{1 n} \\ \cdot & \cdot & \cdot & \cdot \\ r_{i 1} & r_{i 2} & \ldots & r_{i n} \\ \cdot & \cdot & \cdot & \cdot \\ r_{n 1} & r_{n 2} & \ldots & r_{n n}\end{array}\right)$
$=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ \cdot & \cdot & \cdot & \cdot \\ a_{i 1} r_{11}+a_{i 2} r_{21}+\ldots+a_{i n} r_{n 1} & a_{i 1} r_{12}+a_{i 2} r_{22}+\ldots+a_{i n} r_{n 2} & \ldots & a_{i 1} r_{1 n}+a_{i 2} r_{2 n}+\ldots \\ \cdot & \cdot & & +a_{i n} r_{n n} \\ 0 & 0 & \ldots & \cdot \\ \Rightarrow A r \in A_{i}, \text { where each element of } i^{\text {th }} \text { row in } F .\end{array}\right.$
$\therefore A_{i}$ is the right ideal of R. Similarly B_{i} is the left ideal of R.
9.3.3 Example : Let R be the ring of 2×2 upper triangular matrices over a field F then the subset $I=\left\{\left.\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \right\rvert\, a \in F\right\}$ is an ideal of R.
Sol. Let $A, B \in I \Rightarrow A=\left(\begin{array}{cc}0 & a_{1} \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & a_{2} \\ 0 & 0\end{array}\right), a_{1}, a_{2} \in F$
$A-B=\left(\begin{array}{cc}0 & a_{1}-a_{2} \\ 0 & 0\end{array}\right) \in I, \quad a_{1}-a_{2} \in F$
$A r=\left(\begin{array}{cc}0 & a_{1} \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right) \quad$ where $r=\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right) \in R$
$=\left(\begin{array}{cc}0 & a_{1} r_{3} \\ 0 & 0\end{array}\right) \in I$
$r A=\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & r_{3}\end{array}\right)\left(\begin{array}{cc}0 & a_{1} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & r_{1} a_{1} \\ 0 & 0\end{array}\right) \in I$.
Hence I is an ideal of R.
9.3.4 Example : Let R be the ring of all functions from the closed interval $[0,1]$ to the field of real numbers. Let $c \in[0,1]$ and $I=\{f \in R \mid f(c)=0\}$
then I is an ideal of R.
Sol. Let $f, g \in I \Rightarrow f(c)=0, g(c)=0$
$(f-g) c=f(c)-g(c)=0-0=0$
$\therefore f-g \in I \forall f, g \in I$
Let $f \in I$ and $r \in R$
Consider $(r f)(c)=r(c) f(c)$

$$
\begin{aligned}
& =r(c) \cdot 0 \\
& =0
\end{aligned}
$$

$$
\Rightarrow r f \in I
$$

Similarly $f r \in I \forall f \in I, r \in R$.
Hence I is an ideal of R.
9.3.5 Example : Let $R=F_{2}$ be the 2×2 matrix ring over a field F. Let $S=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ be the set of all upper triangular matrices over F then S is a sub ring of R. If $I=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$ then I is an ideal of S but I is neither right nor a left ideal of R.
Sol. Let $S=\left\{\left.\left(\begin{array}{cc}a_{1} & a_{2} \\ 0 & a_{3}\end{array}\right) \right\rvert\, a_{1}, a_{2}, a_{3} \in F\right\}$ be sub ring of R.

$$
\begin{aligned}
& I=\left\{\left.\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right) \right\rvert\, a \in F\right\} \\
& \text { (i) } \text { Let } A=\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right), B=\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) \in I, \quad a, b \in F \\
& A-B=\left(\begin{array}{cc}
0 & a-b \\
0 & 0
\end{array}\right) \in I, \quad a-b \in F
\end{aligned}
$$

$$
\begin{aligned}
& r \in S \Rightarrow r=\left(\begin{array}{ll}
a_{1} & a_{2} \\
0 & a_{3}
\end{array}\right) \\
& A r=\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{1} & a_{2} \\
0 & a_{3}
\end{array}\right)=\left(\begin{array}{cc}
0 & a a_{3} \\
0 & 0
\end{array}\right) \in I \\
& r A=\left(\begin{array}{ll}
a_{1} & a_{2} \\
0 & a_{3}
\end{array}\right)\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & a a_{3} \\
0 & 0
\end{array}\right) \in I
\end{aligned}
$$

$\therefore I$ is an ideal of S.
(ii) To prove that I is neither right nor left ideal of R.

Let $r \in R \Rightarrow r=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right), \quad a_{i} \in F$

$$
\text { Let } \begin{aligned}
A & \in I \Rightarrow A=\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right), \quad a \in F \\
A r & =\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)=\left(\begin{array}{cc}
a a_{3} & a a_{4} \\
0 & 0
\end{array}\right) \notin I \\
r A & =\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\left(\begin{array}{ll}
0 & a \\
o & o
\end{array}\right)=\left(\begin{array}{cc}
0 & a_{1} a \\
0 & a_{3} a
\end{array}\right) \notin I
\end{aligned}
$$

$\therefore I$ is neither right nor left ideal of R.
9.3.6 Example : If A is an ideal in the ring R then the ring A_{n} of all $n \times n$ matrices with entries from A is an ideal of R_{n}.

Sol. Given A is an ideal in R.
Let $B_{1}=\left(b_{i j}\right)$ and $C_{1}=\left(c_{i j}\right)$ be the elements of A_{n} where $b_{i j}, c_{i j} \in A$ for $B_{1}-C_{1}=\left(b_{i j}-c_{i j}\right)$ where $b_{i j}-c_{i j} \in A, 1 \leq i, j \leq n$
$\Rightarrow B_{1}-C_{1} \in A_{n}$

Let $r=\left(r_{i j}\right), \quad r_{i j} \in R$

$$
\begin{aligned}
& B_{1} r=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right)\left(\begin{array}{cccc}
r_{11} & r_{12} & \ldots & r_{1 n} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
r_{n 1} & r_{n 2} & \ldots & r_{n n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
b_{11} r_{11}+b_{12} r_{21}+\ldots+a_{1 n} r_{n 1} & b_{11} r_{12}+b_{12} r_{22}+\ldots+b_{1 n} r_{n 2} & \ldots & b_{11} r_{1 n}+b_{12} r_{2 n}+\ldots \\
\cdot & \cdot & & +b_{1 n} r_{n n} \\
\cdot & \cdot & \cdot & \cdot \\
b_{n 1} r_{11}+b_{n 2} r_{21}+\ldots+b_{n n} r_{n 1} & b_{n 1} r_{12}+b_{n 2} r_{22}+\ldots+b_{n n} r_{n 2} & \ldots & b_{n 1} r_{1 n}+\ldots \\
& & & +b_{n n} r_{n n}
\end{array}\right)
\end{aligned}
$$

where all the entries belongs to $A . \Rightarrow B_{1} r \in A_{n}$.
Similarly $r B_{1} \in A_{n}$, Therefore A_{n} is an ideal of R_{n}.
9.3.7 Theorem : If a ring R has unity then every ideal I in the matrix ring R_{n} is of the form A_{n}, where A is an ideal of R.

Proof. Let $\left(e_{i j}\right), i, j=1,2, \ldots, n$ denote the matrix units in R_{n}.
Let $A=\left\{a_{11} \in R \mid \quad \sum a_{i j} e_{i j} \in I\right\}$ then we claim that A is an ideal of R.
Let $a_{11}, b_{11} \in A$ then there exists matrices
$\alpha=\sum a_{i j} e_{i j}$ and $\beta=\sum b_{i j} e_{i j}$ in I then
$\alpha-\beta=\sum\left(a_{i j}-b_{i j}\right) e_{i j} \in I \quad(\because I$ is an ideal $)$

$$
\Rightarrow a_{11}-b_{11} \in A
$$

Let $r \in R$ and $a_{11} \in A$ with $\sum a_{i j} e_{i j} \in I$
Consider $\left(\sum a_{i j} e_{i j}\right)\left(r e_{11}\right)$

$$
\begin{aligned}
& =\left(a_{11} e_{11}+a_{12} e_{12}+\ldots\right)\left(r e_{11}\right) \\
& =a_{11} e_{11} r e_{11}+a_{12} e_{12} r e_{11}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& =\sum\left(a_{i j} e_{i j}\right) r e_{11} \\
& \left.=\sum a_{i 1} r e_{i 1} \in I \quad\left(e_{i j} e_{k r}=e_{i r} \text { if } j=k\right) \quad \text { i.e., } e_{i j} e_{11}=e_{i 1} \text { if } j=1\right) \\
& \Rightarrow a_{11} r \in A
\end{aligned}
$$

Similarly $r a_{11} \in A \quad \forall r \in R, \quad a_{11} \in A$
$\therefore A$ is an ideal of R.
Now to show that $I=A_{n}$. Let $x=\sum a_{i j} e_{i j} \in I$
Let r and s be some fixed integers between 1 and n
Consider $e_{1 r}\left(\sum a_{i j} e_{i j}\right) e_{s 1}$

$$
\begin{align*}
& =e_{1 r}\left(\sum a_{i s} e_{i 1}\right) \quad\left(e_{i j} e_{s 1}=e_{i 1} \text { if } j=s \text { and } e_{1 r} e_{i 1}=e_{11} \text { if } r=i\right) \\
& =\sum e_{1 r}\left(a_{i s} e_{i 1}\right) \\
& =\sum a_{r s} e_{11} \in I \\
& \Rightarrow a_{r s} \in A \text { for any } r \text { and } s \\
& \Rightarrow a_{i j} \in A \text { for any } i \text { and } j \\
& \Rightarrow \text { all the entries in the matrix } x=\sum a_{i j} e_{i j} \text { are in } A \\
& \Rightarrow x \in A_{n} \\
& \therefore I \subset A_{n} \quad(15.3 .7(\mathrm{a})) \tag{a}
\end{align*}
$$

Conversely let $x=\sum a_{i j} e_{i j} \in A_{n}$.
For $a_{i j} \in A$ there exists a matrix $\sum b_{r s} e_{r s} \in I$ such that $b_{11}=a_{i j}$ then $e_{i 1}\left(\sum b_{r s} e_{r s}\right) e_{1 j}$

$$
\begin{array}{lr}
=e_{i 1}\left(\sum b_{r s} e_{r s} e_{1 j}\right) & \\
=e_{i 1}\left(\sum b_{r 1} e_{r j}\right) & \left(e_{r s} e_{1 j}=e_{r j} \text { if } s=1\right) \\
=\sum e_{i 1}\left(b_{r 1} e_{r j}\right) & \\
=b_{11} e_{i j} \in I & \left(e_{i 1} e_{r j}=e_{i j} \text { if } 1=r\right) \\
=a_{i j} e_{i j} \in I \text { for each } & 1 \leq i, j \leq n \\
\Rightarrow \sum a_{i j} e_{i j} \in I & (\because I \text { is an ideal })
\end{array}
$$

$$
\begin{align*}
& \Rightarrow x \in I \\
& \therefore A_{n} \subset I \tag{b}
\end{align*}
$$

On using (9.3.7(a)) and (15.3.7(b)) we get $A_{n}=I$
9.3.8 Corollary : If D is a division ring then $R=D_{n}$ has non trivial ideals.

Proof. Let I be any ideal in D_{n}
If $I=\{0\}$ there is nothing to prove
Let I be any non zero ideal in D_{n} then $I=A_{n}$, where A is some ideal in D. But D is a division ring
$\Rightarrow D$ has only trivial ideals
$\Rightarrow A=D$
$\Rightarrow A_{n}=D_{n}$
$\Rightarrow I=D_{n}$
$\therefore D_{n}$ has only trivial ideals.
9.3.9 Note : (i) D has only $\{0\}$ and D are right as well as left ideals. But we have seen in the Example (15.3.2) for $n>1 . D_{n}$ has nontrivial right as well as left ideals. But from the theorem (15.3.7) since $\{0\}$ and D are the only right or left ideals.
$\therefore D_{n}$ cannot have non ideal right (or) left ideals which is not true.
\therefore In general the theorem (15.18) is not true if the word ideal is replaced by right or left ideals.
(ii) If R is a ring without unity then theorem (15.3.7) is not necessarily true.
i.e. R is a ring with unity is also must in the theorem (15.3.7).
9.3.10 Example : Let $(R,+)$ be an additive group of order p, where p is prime number. Define multiplication in R by $a b=0 \quad \forall a, b \in R$. Then R has no unity.

If $1 \in R$ then $1 . a=a .1=a$
But by the definition of multiplication 1. $a=0$
$\therefore R$ has no unity.
If X is any additive subgroup of $(R,+)$ then X is an ideal of R.
because if $x \in X$ and $r \in R$, we have
$x r=0=r x \in X \quad(0 \in X)$
$\therefore X$ is an ideal of R.
\therefore Any subset X of R is an ideal of R iff X is a subgroup of R under addition.
But R is of order p then the only subgroups of R are $\{0\}$ and R itself.
\therefore The only ideals of R are $\{0\}$ and R itself. Then by the theorem (15.3.7)
The only ideals of R_{2} are $(0)_{2 \times 2}$ and R_{2} only (15.3.10(a))
Now consider $I=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in R\right\}$ then I is an ideal of R_{2}
Also $I \neq\{0\}$ and $I \subset R_{2}$ which is a contradiction to (15.3.10(a))
Therefore, in general the theorem is not true for rings which is not unity.
9.3.11 Theorem: Let $\left(A_{i}\right)_{i \in \wedge}$ be a family of right (left) ideals in a ring R.

Then $\bigcap_{i \in \wedge} A_{i}$ is also a right(left) ideal.
Proof. Let $a, b \in \bigcap_{i \in \Lambda} A_{i} \Rightarrow a \in A_{i}, b \in A_{i}$ for each i
$\Rightarrow a-b \in A_{i}$ for each $i \Rightarrow a-b \in \bigcap_{i \in \Lambda} A_{i}$
Let $r \in R$ and $a \in \bigcap_{i \in \wedge} A_{i} \Rightarrow r \in R$ and $a \in A_{i}$ for each i
$\Rightarrow r a \in A_{i}$ for each $i \quad\left(A_{i}\right.$ is an left ideal $)$
Similarly ar $\in A_{i}$ for each $i \quad\left(A_{i}\right.$ is an right ideal $)$
$\therefore r a \in \bigcap_{i \in \Lambda} A_{i} \Rightarrow \bigcap_{i \in \Lambda} A_{i}$ is a left ideal.
ar $\in \bigcap_{i \in \Lambda}^{i \in \Lambda} A_{i} \Rightarrow \bigcap_{i \in \Lambda}^{i \in \wedge} A_{i}$ is a right ideal.
9.3.12 Definition : Let S be a subset of R. Let $\mathcal{A}=\{A \mid A$ is a right ideal of R containing $S\}$
then \mathcal{A} is non empty, since $R \in \mathcal{A}$
Let $I=\bigcap_{A \in \mathcal{A}} A$. Since $S \subset A$ for each $A \in \mathcal{A}$
$\Rightarrow I$ is the smallest ideal containing S
$\Rightarrow I$ is an ideal generated by S.
If \mathcal{A} contains all right ideals A, where $S \subset A$ for each $A \in \mathcal{A}$ then I is called the smallest right ideal of R containing S and is denoted by $(S)_{r}$. The smallest right ideal of R containing a subset S is called a right ideal generated by S.

Similarly if \mathcal{A} contains all left ideals A, where $S \subset A$ for each $A \in \mathcal{A}$ then I is called the smallest left ideal of R containing S and is denoted by $(S)_{l}$. The smallest left ideal of R containing a subset S is called a left ideal generated by S.

If $S=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a finite set then $(S)_{r}$ is also written as $\left(a_{1}, a_{2}, \ldots, a_{m}\right)_{r}$. Similarly $(S)_{l}$ is also written as $\left(a_{1}, a_{2}, \ldots, a_{m}\right)_{l} . S$ is also written as $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$.

9.4 Principal Ideal :

9.4.1 Definition: A right ideal I of a ring R is called finitely generated if $I=\left(a_{1}, a_{2}, \ldots, a_{m}\right)_{r}$ for some $a_{i} \in R, 1 \leq i \leq m$.
9.4.2 Definition : A right ideal I of a ring R is called principal right ideal if $I=(a)_{r}$ for some $a \in R \quad$ (i.e., generated by single element).
9.4.3 Note : In a similar manner we define a finitely generated left ideal, a finitely generated ideal, a principal left ideal and a principal ideal.
9.4.4 Definition : A ring in which each ideal is principal is called a principal ideal ring $(P I R)$. If R is an integral domain with unity which is a PIR then it is called principal ideal domain.
9.4.5 Example : All the ideals in the ring of integers Z are principal ideals.

Sol. Let I be any non zero ideal in Z
Let n be the smallest positive integer in I then for any $m \in I$ we write $m=n q+r$ where $0 \leq r<n \quad$ (by division of algorithm)
$\Rightarrow r=m-n q \in I \quad(m \in I, I$ is an ideal,$\Rightarrow n q \in I$ for any $q \in Z)$
$\Rightarrow r \in I$ where $0 \leq r<n$
$\Rightarrow r=0 \quad$ (by choice of n i.e. n is the smallest positive integer in I)
$\Rightarrow m=n q$
$\Rightarrow I=(n)$
9.4.6 Note : Let I be an ideal in R for $a, b \in R$ we define $a \equiv b(\bmod I)$ if $a-b \in I$ then this congruence is an equivalence relation in R. Every equivalence relation give rise to equivalence classes.
Let R / I denote the set of equivalence class and $\bar{a} \in R / I$ be the equivalence class containing a.
Consider $\bar{a} \in R / I$
Let $b \in \bar{a} \Rightarrow b \equiv a(\bmod I)$

$$
\Rightarrow b-a \in I
$$

$$
\Rightarrow b-a=x, \text { for some } x \in I
$$

$$
\Rightarrow b=a+x, \text { for some } x \in I
$$

$$
\Rightarrow \text { every element of } \bar{a} \text { is of the form } a+x \text {, for some } x \in I
$$

$$
\Rightarrow \bar{a}=a+I
$$

We shall define addition and multiplication in R / I

$$
\begin{aligned}
& \bar{a}+\bar{b}=\overline{a+b} \forall \bar{a}, \bar{b} \in R / I \quad \text { and } \\
& \bar{a} \cdot \bar{b}=\overline{a b} \forall \bar{a}, \bar{b} \in R / I
\end{aligned}
$$

To show that these binary operations are well defined.
Let $\bar{a}=\bar{c}, \bar{b}=\bar{d}$ then $a-c \in I, b-d \in I$

$$
\begin{aligned}
&(a-c)+(b-d) \in I \Rightarrow(a+b)-(c+d) \in I \\
& \Rightarrow \overline{a+b}=\overline{c+d} \\
& \Rightarrow \bar{a}+\bar{b}=\bar{c}+\bar{d} \\
& a b-c d=a(b-d)+(a-c) d \quad(a-c, b-d \in I \text { which is an ideal }) \\
& \quad \Rightarrow a b-c d \in I \\
& \Rightarrow \overline{a b}=\overline{c d} \\
& \Rightarrow \bar{a} \bar{b}=\bar{c} . \bar{d}
\end{aligned}
$$

(i) Let $\bar{a}, \bar{b}, \bar{c} \in R / I$ then

$$
\begin{aligned}
\bar{a}+(\bar{b}+\bar{c})=\bar{a}+(\overline{b+c}) & =\overline{a+(b+c)} \\
& =\overline{(a+b)+c} \\
& =(\overline{a+b})+\bar{c} \quad(a, b, c \in R) \\
& =(\bar{a}+\bar{b})+\bar{c}
\end{aligned}
$$

(ii) $\overline{0}$ is the additive identity in R / I
(iii) For every $\bar{a} \in R / I$ we have

$$
\begin{gathered}
\bar{a}+(-\bar{a})=\overline{a+(-a)}=\overline{0} \\
(-\bar{a})+\bar{a}=0
\end{gathered}
$$

(iv) $\bar{a}+\bar{b}=\overline{a+b}=\overline{b+a}$

$$
=\bar{b}+\bar{a} \quad \forall \bar{a}, \bar{b} \in R / I
$$

(v) $\bar{a}(\bar{b} . \bar{c})=\bar{a}(\overline{b c})=\overline{a(b c)}$

$$
\begin{aligned}
=\overline{(a b) c} & =(\overline{a b}) \bar{c} \\
& =(\bar{a} \cdot \bar{b}) \bar{c}
\end{aligned}
$$

(vi) $\bar{a} \cdot(\bar{b}+\bar{c})=\bar{a} \cdot \bar{b}+\bar{a} \cdot \bar{c} \quad$ and

$$
(\bar{b}+\bar{c}) \cdot \bar{a}=\bar{b} \cdot \bar{a}+\bar{c} \cdot \bar{a}
$$

Then $(R / I,+,$.$) is a ring called quotient ring modulo I$.
9.4.7 Definition : Let I be an ideal of a ring R then the $\operatorname{ring}(R / I,+,$.
is called the quotient ring modulo I.
If $I=R$ then R / I is the zero ring.
If $I=(0)$ then R / I is the same as the ring R which we identify $a+(0)$ with $a \in R$
9.4.8 Note : If S is any subset of R then the ideal generated by S is the smallest ideal containing S.

We shall show that
$(a)=\left\{\sum_{i(\text { finitesum })} r_{i} a s_{i}+r a+a s+n a / r, s, r_{i}, s_{i} \in R, n \in Z\right\}$
$(a)_{r}=\{a r+n a / r \in R, n \in Z\}$
$(a)_{l}=\{r a+n a / r \in R, n \in Z\}$
If $1 \in R$ the they will become
$(a)=\left\{\sum_{i(f \text { initesum })} r_{i} a s_{i} / r_{i}, s_{i} \in R\right\}$
$(a)_{r}=\{a r / r \in R\}$ and $(a)_{l}=\{r a / r \in R\}$
In this case the symbols $R a R, a R$ and $R a$ are used for $(a),(a)_{r}$ and $(a)_{l}$ respectively.
Let $S=\left\{\sum_{i(\text { finitesum })} r_{i} a s_{i}+r a+a s+n a / r, s, r_{i}, s_{i} \in R, n \in Z\right\}$
We shall show that $a \in S$ and S is the smallest ideal containing a.
Taking $r_{i}=s_{i}=r=s=0$ and $n=1$ we get $a \in S$
We shall show that S is an ideal.
Consider $\sum r_{i} a s_{i}+r a+a s+n a$ and $\sum r_{i}^{\prime} a s_{i}^{\prime}+r^{\prime} a+a s^{\prime}+n^{\prime} a$ be any two elements of S then

$$
\begin{aligned}
& \left(\sum_{\text {finitesum }} r_{i} a s_{i}+r a+a s+n a\right)-\left(\sum_{\text {finitesum }} r_{i}^{\prime} a s_{i}^{\prime}+r^{\prime} a+a s^{\prime}+n^{\prime} a\right) \\
& \quad=\left(\sum_{\text {finitesum }} r_{i} a s_{i}-\sum_{\text {finitesum }} r_{i}^{\prime} a s_{i}^{\prime}\right)+\left(r-r^{\prime}\right) a+\left(s-s^{\prime}\right) a+\left(n-n^{\prime}\right) a \in S
\end{aligned}
$$

where $r-r^{\prime} \in R, s-s^{\prime} \in R, n-n^{\prime} \in Z$
$\Rightarrow S$ is a subgroup of R under addition.
Let $r^{\prime} \in R$ and $\left.\sum_{\text {finitesum }} r_{i} a s_{i}+r a+a s+n a\right) \in S$
Consider $\left.r^{\prime}\left[\sum_{\text {finitesum }} r_{i} a s_{i}+r a+a s+n a\right)\right]$

$$
\begin{aligned}
& \left.=\sum_{i(\text { finitesum })} r^{\prime} r_{i} a s_{i}+r^{\prime} r a+r^{\prime} a s+r^{\prime} n a\right) \\
& =\sum_{j(\text { finitesum })} r_{j} a s_{i}+r_{l} a+r^{\prime} a s+r^{\prime}(a+a+\ldots+n \text { times })
\end{aligned}
$$

where $r_{j}=r^{\prime} r_{i}$ and $r_{l}=r^{\prime} r$
$=\left[\sum_{j(\text { finitesum })} r_{j} a s_{i}+r^{\prime} a s\right]+\left(r_{1}+r^{\prime}\right) a+\left(r^{\prime} a+r^{\prime} a+\ldots+r^{\prime} a\right)(n-1$ times $)$
$=\left[\left(\sum_{j(\text { finitesum })} r_{j} a s_{i}+r^{\prime} a s\right)+r_{l} a+0 s+0 a\right]+\left(0+r^{\prime} a+0 s+0 a\right)+\ldots+$ $\left(0+r^{\prime} a+0 s+0 a\right)+\ldots \quad(n-1)$ times
$\in S \quad(\because S$ is closed under addition $)$
Similarly $\left[\sum r_{i} a s_{i}+r a+a s+n a\right] r^{\prime} \in S$
$\therefore S$ is an ideal.
Suppose S^{\prime} is another ideal of R containing a i.e. $a \in S^{\prime}$
then $r a \in S^{\prime} \forall r \in R$, and $a s \in S^{\prime} \forall s \in R$, $\quad n a \in S^{\prime} \forall n \in Z$ and
$\sum r_{i} a s_{i} \in S^{\prime}$ for $r_{i} s_{i} \in R$
$\Rightarrow \sum r_{i} a s_{i}+r a+a s+n a \in S^{\prime}$
$\Rightarrow S \subset S^{\prime}$
$\Rightarrow S=(a)$
9.4.9 Example : Let I be a right (left) ideal of R and it contains a unit of R then $I=R$

Sol. Let I be a right ideal of $R \Rightarrow I \subset R$

Let u be any unit in $I \Rightarrow u^{-1}$ exists and $u^{-1} \in R$
$\Rightarrow u u^{-1}=1 \in I \quad(\because I$ is right ideal $)$
$\therefore 1 \in I$ then $I=R$
9.4.10 Example : Let $(n)=\{n a \mid a \in Z\}$ be an ideal in Z. If $n \neq 0$ then the quotient ring $Z /(n)$ is Z_{n}
Sol. Consider $Z /(n)=\{a+(n) \mid a \in z\}$

$$
\begin{aligned}
& =\{0+(n), 1+(n), \ldots,(n-1)+(n)\} \\
& =\{\overline{0}, \overline{1}, \ldots \ldots, \overline{n-1}\} \\
& =Z_{n}
\end{aligned}
$$

9.4.11 Example : Let R be a ring with unity and let $R[x]$ be the polynomial ring over R. Let $I=(x)$ be the ideal in $R[x]$ consisting of the multiples of x then the quotient ring $R[x] / I=\{\bar{a} \mid a \in R\}$

Sol. Let $I=(x)$ then $x \in I \Rightarrow \bar{x}=x+I=I$

$$
\Rightarrow \bar{x}=\overline{0}
$$

Consider any element $\overline{a+b x+c x^{2}+\ldots \ldots} \in R[x] / I$ then

$$
\begin{aligned}
\overline{a+b x+c x^{2}+\ldots \ldots} & =\bar{a}+\bar{b} \bar{x}+\bar{c} \overline{x^{2}}+\ldots \ldots \\
& =\bar{a} \quad(\bar{x}=\overline{0})
\end{aligned}
$$

$$
\therefore R[x] / I=\{\bar{a} \mid a \in R\}
$$

9.4.12 Example : Find the quotient ring $R[x] /\left(x^{2}+1\right)$

Sol. $x^{2}+1 \in\left(x^{2}+1\right)$
$\Rightarrow \overline{x^{2}+1}=\overline{0}$
$\Rightarrow \overline{x^{2}}+\overline{1}=\overline{0}$
$\Rightarrow \overline{x^{2}}=\overline{0}-\overline{1}$
$=-\overline{1}$
$\overline{x^{3}}=\overline{x^{2} x}=\overline{x^{2}} \cdot \bar{x}=-\bar{x}$ and $\overline{x^{4}}=\overline{x^{2} x^{2}}=\overline{x^{2}} \cdot \overline{x^{2}}=(-\overline{1}) \cdot(-\overline{1})=\overline{1}$

Also $\quad \overline{x^{5}}=\overline{x^{2} x^{3}}=(-\overline{1})(-\bar{x})=\bar{x}$
In general $\quad \overline{x^{n}}= \pm \overline{1}$ if n is even
$= \pm \bar{x}$ if n is odd.
Let $\overline{a+b x+c x^{2}+\ldots \ldots}$ be any element of $R[x] /\left(x^{2}+1\right)$ then

$$
\begin{aligned}
\overline{a+b x+c x^{2}+\ldots \ldots} & =\bar{a}+\overline{b x}+\overline{c x^{2}}+\ldots \ldots \\
& =\bar{a}+\bar{b} \bar{x}+\bar{c} \overline{x^{2}}+\ldots \ldots \\
& =\bar{a}+\bar{b} \bar{x}+\bar{c}(-\overline{1})+d(-\bar{x})+e(1)+\ldots \ldots \\
& =(\bar{a}-\bar{c}+\bar{e})+(\bar{b}-\bar{d}+\bar{f}) \bar{x} \\
& =\bar{\alpha}+\bar{\beta} \bar{x} \quad \quad \text { where } \alpha=a-c+e \ldots \ldots \in R \\
& \quad \beta=b-d+f \ldots \ldots \in R
\end{aligned}
$$

$\therefore R[x] /\left(x^{2}+1\right)=\{\bar{\alpha}+\bar{\beta} x / \alpha, \beta \in R\}$ where $\overline{x^{2}}=-\overline{1}$
9.4.13 Note : $R[x] /\left(x^{2}+1\right)$ is the field of complex numbers where $\bar{\alpha}, \alpha \in R$ is identified with α and \bar{x} is identified with $\sqrt{-1}$.
9.4.14 Example : Let $R=\left(\begin{array}{cc}Z & Q \\ 0 & 0\end{array}\right)$ and let $A=\left(\begin{array}{cc}0 & Q \\ 0 & 0\end{array}\right)$ be an ideal of R then $R / A=\left\{\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right) / n \in Z\right\}$
Sol. Let $\left(\begin{array}{cc}0 & x \\ 0 & 0\end{array}\right) \in\left(\begin{array}{cc}0 & Q \\ 0 & 0\end{array}\right)$, where $x \in Q$
i.e. $\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right) \in A, \quad$ where A is an ideal of $R \Rightarrow\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=\overline{0}$

Consider any element $\left(\begin{array}{ll}\bar{n} & x \\ 0 & 0\end{array}\right) \in R / A$ then
$\left(\begin{array}{ll}n & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right)+\overline{0} \quad\left(\therefore\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=\overline{0}\right)$

$$
\begin{gathered}
=\left(\begin{array}{ll}
n & 0 \\
0 & 0
\end{array}\right) \\
\therefore R / A=\left\{\left.\left(\begin{array}{ll}
n & 0 \\
0 & 0
\end{array}\right) \right\rvert\, n \in Z\right\}
\end{gathered}
$$

9.4.15 Note : If the element $\left(\begin{array}{cc}n & 0 \\ 0 & 0\end{array}\right)$ is identified with $n \in Z$, then R / A is identified with ring of integers, where $\left(\begin{array}{ll}n & 0 \\ 0 & 0\end{array}\right)$ is identified with n.
9.4.16 Example : Find the non trivial (i) right ideals
(ii) ideals of the ring $R=\left(\begin{array}{cc}Z & Q \\ 0 & 0\end{array}\right)$

Sol. (i) Let A be any non zero right ideal of R
Let $X=\left\{n \in Z \left\lvert\,\left(\begin{array}{cc}n & a \\ 0 & 0\end{array}\right) \in A\right.\right.$ for some $\left.a \in Q\right\}$ then X is a subgroup of Z under addition. Let $n_{1}, n_{2} \in X$

$$
\begin{aligned}
& n_{1} \in X \Rightarrow\left(\begin{array}{cc}
n_{1} & a_{1} \\
0 & 0
\end{array}\right) \in A, \text { where } n_{1} \in Z, a_{1} \in Q \\
& n_{2} \in X \Rightarrow\left(\begin{array}{cc}
n_{2} & a_{2} \\
0 & 0
\end{array}\right) \in A, \text { where } n_{2} \in Z, a_{2} \in Q \\
& \Rightarrow\left(\begin{array}{cc}
n_{1} & a_{1} \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
n_{2} & a_{2} \\
0 & 0
\end{array}\right) \in A \quad(A \text { is a right ideal }) \\
& \Rightarrow\left(\begin{array}{cc}
n_{1}-n_{2} & a_{1}-a_{2} \\
0 & 0
\end{array}\right) \in A \\
& \Rightarrow n_{1}-n_{2} \in X \\
& \therefore X \text { is a subgroup of } Z
\end{aligned}
$$

Since every subgroup of Z is of the form $n Z$, for some $n \in Z$

Let $X=n_{o} Z$, for some $n_{o} \in Z$

$$
X=\left\{n \in Z:\left(\begin{array}{cc}
n & a \\
0 & 0
\end{array}\right) \in A\right\}
$$

Case (1) $X \neq(0)$ i.e., $n_{0} \neq 0$
We shall show that $A=\left(\begin{array}{cc}n_{0} Z & Q \\ 0 & 0\end{array}\right)$
Let $a \in Q$ be such that $\left(\begin{array}{cc}n_{0} & a \\ 0 & 0\end{array}\right) \in A$. Let $z \in Z$ and $q \in Q$ then
$\left(\begin{array}{cc}n_{0} Z & q \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}n_{0} & a \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}Z & q / n_{0} \\ 0 & 0\end{array}\right) \in A$
$\left(A\right.$ is right ideal and $\left(\begin{array}{cc}n_{0} & a \\ 0 & 0\end{array}\right) \in A$ and $\left.\left(\begin{array}{cc}Z & q / n_{0} \\ 0 & 0\end{array}\right) \in R\right)$
\Rightarrow any element of $\left(\begin{array}{cc}n_{0} Z & q \\ 0 & 0\end{array}\right)$ is in A
$\Rightarrow\left(\begin{array}{cc}n_{0} Z & Q \\ 0 & 0\end{array}\right) \subset A$
But $A \subset\left(\begin{array}{cc}n_{0} Z & Q \\ 0 & 0\end{array}\right) \quad$ Since $x=n_{0} Z$
$\Rightarrow A=\left(\begin{array}{cc}n_{0} Z & Q \\ 0 & 0\end{array}\right)$. Also, we have seen that every element of A
$\left(\begin{array}{cc}n_{0} Z & q \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}n_{0} & a \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}Z & q / n_{0} \\ 0 & 0\end{array}\right)$
$=\left(\begin{array}{cc}n_{0} & a \\ 0 & 0\end{array}\right) r \quad$ where $r=\left(\begin{array}{cc}Z & q / n_{0} \\ 0 & 0\end{array}\right) \in R$
$\Rightarrow A$ is generated by $\left(\begin{array}{cc}n_{0} & a \\ 0 & 0\end{array}\right)$
$\Rightarrow A$ is a principal right ideal.
case(2) Let $X=(0)$ i.e. $n_{0}=0$
Let $K=\left\{q \in Q /\left(\begin{array}{ll}0 & q \\ 0 & 0\end{array}\right) \in A\right.$. Then K is a subgroup of Q
For $q_{1}, q_{2} \in K \Rightarrow\left(\begin{array}{cc}0 & q_{1} \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0 & q_{2} \\ 0 & 0\end{array}\right) \in F$.
$\Rightarrow\left(\begin{array}{cc}0 & q_{1}-q_{2} \\ 0 & 0\end{array}\right) \in A \quad(\therefore A$ is an ideal $) \quad \Rightarrow q_{1}-q_{2} \in K$
$\therefore A=\left(\begin{array}{cc}0 & K \\ 0 & 0\end{array}\right)$, where $K \subset Q$
(ii) The non trivial right ideals
$A=\left(\begin{array}{cc}n_{0} Z & Q \\ 0 & 0\end{array}\right), n_{0} \neq 0 \in Z \quad$ and
$A=\left(\begin{array}{cc}0 & K \\ 0 & 0\end{array}\right)$, where K is additive subgroup of Q, R are also left ideals.
Consider $\left(\begin{array}{cc}n_{1} & q_{1} \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}n_{0} Z & q \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}n_{1} n_{0} Z & n_{1} q \\ 0 & 0\end{array}\right)$
$=\left(\begin{array}{cc}n_{0}\left(n_{1} Z\right) & q_{1}^{\prime} \\ 0 & 0\end{array}\right) \in A \quad \forall \quad A=\left(\begin{array}{cc}n_{1} & q_{1} \\ 0 & 0\end{array}\right) \in R$
$\Rightarrow A$ is left ideal of R

Similarly $\left(\begin{array}{cc}0 & K \\ 0 & 0\end{array}\right)$ is also left ideal of R.
\therefore Even if R is non commutative we have right ideals which are also left ideals. But each left ideal of R is not a right ideal
Consider $A=\left\{\left(\begin{array}{cc}n_{0} m & m a \\ 0 & 0\end{array}\right) / m \in Z\right\}$ where n_{0} and a are fixed elements in Z and Q. Then A is a left ideal of R but A is not a right ideal of R.
9.4.17 Example : Let R be a commutative ring with unity. Suppose R has no non trivial ideals then prove that R is a field.

Sol. Let R be a commutative ring with unity
Let R has no non trivial ideals then the ideals of R are (0) and itself. We shall show that every non zero element in R has multiplicative inverse

Let a be any non zero element of R.
Consider the left ideal $R a=\{r a: r \in R\}$ of R.
Since R is commutative then $R a$ is also right ideal of R
$\Rightarrow R a$ is an ideal of R
$1 \in R \Rightarrow a=1 a \in R a$ where $a \neq 0$
$\Rightarrow R a \neq\{0\}$
$\Rightarrow R a=R$ only $\quad($ since $\{0\}, R$ are the only ideals of R)
Since $1 \in R$ then $1=b a$ for some $b \in R$

$$
\begin{aligned}
& \Rightarrow a b=1 \quad(R \text { is commutative }) \\
& \Rightarrow b=a^{-1}
\end{aligned}
$$

$\therefore R$ is a field.
9.4.18 Note : (i) Conversely if R is a field then R is a division ring and hence it has no proper ideals.
(ii) Every field is a principal ideal ring.

9.5 Summary

In this lesson we have defined ideals of rings. Also we have defined rings of matrices. At end of the section we have introduced the notion of quotient rings.

9.6 Model Examination Questions

(1) Let R be a commutative ring with unity. Suppose R has no nontrivial ideals then prove that R is a field.
(2) Find all ideal in a pollynomial ring $F[x]$ over a field F.
(3) Find right ideals, left ideals and ideals of a ring $R=\left(\begin{array}{cc}Q & Q \\ 0 & 0\end{array}\right)$

9.7 Glossary

Ideal of rings, rings of matrices, principal ideal rings.

LESSON-10

HOMOMORPHISMS OF RINGS

10.1 Introduction : In this lesson, we define homomorphism between two rings. Further we established the fundamental theorem of homomorphism and the correspondence theorem. Moreover we introduce the notion of anti-homomorphism.

10.2 Homomorphism of Rings

10.2.1 Definition : Let f be a mapping from a ring R into a ring S such that
(i) $f(a+b)=f(a)+f(b) \quad \forall a, b \in \mathrm{R}$
(ii) $f(a b)=f(a) f(b) \quad \forall a, b \in \mathrm{R}$

Then f is called a homomorphism of R into S.
If f is one-one then f is called an isomorphism (monomorphism) from R into S. In this case f is called an embedding of R into S (or R is embeddable in $S)$. We also say that S cotains a copy of R and R may be identified with a subring of S. The symbol $R \subset S$ means that R is embeddable in S.
10.2.2 Note : (i) If a homomorphism f from a ring R into a ring S is both 1-1 and onto then there exists a homomorphism g from S into R that is also $1-1$ and onto. In this case we say that the two rings R and S are isomorphic. It is denoted by $R \simeq S$.
(ii) If $R \simeq S$ then $S \simeq R$. Also the identity mapping gives $R \simeq R$ for any ring. It is easy to verify that if $f: R \rightarrow S$ and $g: S \rightarrow T$ are isomorphisms of R onto S and S onto T respectively then $g f$ is also a isomorphism of R onto T i.e., $R \simeq S$ and $S \simeq T$ then $R \simeq T$. Therefore isomorphism is an equivalence relation in the class of rings.
10.2.3 Theorem : Let $f: R \rightarrow S$ be an isomorphism of a ring R into a
ring S then we have the following
(i) If 0 is the zero of R then $f(0)$ is the zero of S.
(ii) If $a \in R$ then $f(a)=-f(a)$.
(iii) The set $\{f(a) \mid a \in R\}$ is a subring of S is called the homomorphic image of R by the mapping f and is denoted by $\operatorname{Im} f$ or $f(R)$.
(iv) The set $\{a \in R \mid f(a)=0\}$ is an ideal in R called the kernel of f and is denoted by kerf or $f^{-1}(0)$.
(v) If $1 \in R$ then $f(1)$ is the unity of the subring $f(R)$.
(vi) If R is commutative then $f(R)$ is commutative.

Proof.(i) Let $a \in R$
Consider $f(a)=f(a+0)=f(a)+f(0) \quad(f$ is homomorphism $)$
Similarly $f(a)=f(0)+f(a)$
Therefore, $f(0)$ is the zero of S we denote $f(0)=0$.
(ii) Consider $f(0)=f(a+(-a))=f(a)+f(-a)$

Therefore $f(-a)=-f(a)$
(iii) $f(\mathbb{R})=\{f(a) \mid a \in R\}$

Let $f(a), f(b) \in R$ where $a, b \in R$
Consider $f(a)-f(b)=f(a-b) \in f(R) \quad$ (since $a-b \in R)$
Similarly $f(a) f(b)=f(a b) \in f(R) \quad$ (since $a b \in R$)
Therefore $f(R)$ is a subring of S.
(iv) Let $\operatorname{ker} f=\{a \in R \mid f(a)=0\}$

Let $a, b \in \operatorname{ker} f \Rightarrow f(a)=0, f(b)=0$
Consider $f(a-b)=f(a)-f(b) \quad(\because f$ is homomorphism $)$

$$
=0-0=0 . \text { Therefore } a-b \in \operatorname{ker} f
$$

Consider $f(a r)=f(a) f(r)=0 f(r)=0$. Therefore ar $\in \operatorname{ker} f$.

Similarly $r a \in \operatorname{kerf}$. Therefore kerf is an ideal of R
(v) Let $a \in R$. Consider $f(a) f(1)=f(a .1)=f(a)$

Similarly $f(1) f(a)=f(1 . a)=f(a)$. Therefore $f(1)$ is the identity of $f(R)$
(vi) Let $f(a), f(b) \in f(R)$ where $a, b \in R$

$$
\begin{aligned}
f(a) f(b) & =f(a b) \\
& =f(b a) \quad(a b=b a \quad \forall a, b \in R) \\
& =f(b) f(a)
\end{aligned}
$$

Therefore $f(R)$ is commutative.
10.2.4 Theorem : Let $f: R \rightarrow S$ be a homomorphism of a ring R into a ring S then $\operatorname{ker} f=(0)$ iff f is $1-1$.

Proof. (i) Let $\operatorname{ker} f=\{0\}$
If $f(a)=f(b) \Rightarrow f(a)-f(b)=0$

$$
\begin{aligned}
& \Rightarrow f(a-b)=0 \\
& \Rightarrow a-b=0 \quad(k \operatorname{ker} f=(0)) \\
& \Rightarrow a=b . \quad(\because f \text { is } 1-1)
\end{aligned}
$$

(ii) If f is $1-1$ then to prove that $\operatorname{ker} f=\{0\}$

Let $a \in \operatorname{ker} f \Rightarrow f(a)=0 \Rightarrow f(a)=f(0) \Rightarrow a=0 \quad(\because f$ is $1-1)$
Therefore $\operatorname{ker} f=\{0\}$
10.2.5 Theorem : Let N be an ideal in a ring R then \exists a onto homomorphism from $R \rightarrow R / N$, where R / N is the quotient ring of R modulo N.
(It is called the canonical or natural homomorphism)
Proof. Let $f: R \rightarrow R / N$ defined by $f(x)=x+N=\bar{x} \quad \forall x \in \mathrm{R}$
\mathbf{f} is homomorphism : $f(x+y)=\overline{x+y}=\bar{x}+\bar{y}=f(x)+f(y) \quad \forall x, y \in R$
Also $f(x y)=\overline{x y}=\bar{x} \bar{y}=f(x) \cdot f(y) \quad \forall x, y \in R$.
Therefore f is homomorphism.
\mathbf{f} is onto : Let $\bar{x} \in R / N \exists x \in R \ni f(x)=\bar{x}$. Therefore f is onto.
$\Rightarrow R / N$ is a homomorphic image of R.
Hence there exists onto homomorphism from $R \rightarrow R / N$.
\Rightarrow Every homomorphic image of a ring is of the type a quotient of R modulo some ideal of R. This homomorphism is called natural homomorphism or canonical homomorphism.
10.2.6 Theorem : (Fundamental Theorem of Homomorphisms)

Let f be a homomorphism of a ring R into a ring S with kernel N then $R / N \simeq \operatorname{Imf}$

Proof. Define $g: R / N \rightarrow \operatorname{Imf}$ by $g(a+N)=g(\bar{a})=f(a)$
g is well defined : Let $a+N=b+N$

$$
\begin{aligned}
& \Rightarrow \quad(a-b)+N=N \\
& \Rightarrow a-b \in N \\
& \Rightarrow f(a-b)=0 \\
& \Rightarrow f(a)-f(b)=0 \quad(f \quad \text { is homomorphism }) \\
& \Rightarrow f(a)=f(b) \\
& \Rightarrow g(a+N)=g(b+N)
\end{aligned}
$$

g is homomorphism : Consider $g(\bar{a}+\bar{b})=g(\overline{a+b})=f(a+b)=f(a)+f(b)$ $=g(\bar{a})+g(\bar{b})$.
Also $g(\bar{a} \cdot \bar{b})=g(\overline{a b})=f(a b)=f(a) f(b)=g(\bar{a}) g(\bar{b}) \quad \forall \bar{a}, \bar{b} \in R / N$.
Therefore g is homomorphism.
\mathbf{g} is onto : Let $b \in \operatorname{Imf} \exists a \in R \ni f(a)=b$
$\Rightarrow g(\bar{a})=f(a)=b$. Therefore g is onto.
\mathbf{g} is $\mathbf{1 - 1} \mathbf{:}$ Let $\bar{a}, \bar{b} \in R / N$.
Let $g(\bar{a})=g(\bar{b}) \Rightarrow f(a)=f(b)$

$$
\begin{aligned}
& \Rightarrow f(a)-f(b)=0 \\
& \Rightarrow f(a-b)=0 \\
& \Rightarrow a-b \in N \\
& \Rightarrow a \equiv b(\bmod N) \\
& \Rightarrow \bar{a}=\bar{b} .
\end{aligned}
$$

Therefore $R / N \simeq \operatorname{Img} f$.
10.2.7 Note : This theorem can also be stated as given a homomorphism of rings $f: R \rightarrow S$ there exists a unique injective homomorphism $g: R / \operatorname{ker} f \rightarrow$ S such that $f=g \eta$, where η is the canonical homomorphism.
Proof. $g: R / \operatorname{ker} f \rightarrow S$ is a homomorphism defined by $g(\bar{a})=f(a)$ then g is injective.
Also $f=g \eta$. Since $f(a)=g(\bar{a})=g(\eta(a)) \quad(\eta(a)=a+N=\bar{a} \forall a \in R)$
g is unique : Let $f=h \eta$, where $h: R / \operatorname{ker} f \rightarrow S$ is a homomorphism then $g \eta=h \eta \Rightarrow g \eta(a)=h \eta(a) \forall a \in R$
$\Rightarrow g(\bar{a})=h(\bar{a}) \forall a \in R / \operatorname{kerf}$
$\Rightarrow g=h$
10.2.8 Note : Let f be a mapping from a set R into a set S and $A \subset S$. Let $f^{-1}(A)=\{r \in R \mid f(r) \in A\}$ then
(1) f^{-1} is a mapping of subsets of S into subsets of R.
(2) $f\left(f^{-1}(A)\right) \subset A$
(3) If f is onto then $A \subset f\left(f^{-1}(A)\right)$
(4) If f is onto then $f\left(f^{-1}(A)\right)=A$
(5) If X is any subset of R then $X \subset f^{-1}(f(X))$.

10.3 Correspondence Theorem :

10.3.1 Theorem : Let $f: R \rightarrow S$ be a homomorphism of a ring R onto a
ring S and let $N=\operatorname{ker} f$. Then the mapping $F: A \rightarrow f(A)$ defines one-one correspondence from the set of all ideals (right ideals, left ideals) in R that contain N onto the set of all ideals (right ideals, left ideals) in S. It prserves ordering in the sense that $A \subsetneq B$ iff $f(A) \subsetneq f(B)$.
Proof. Let $f: R \rightarrow S$ be a homomorphism of a ring R onto a ring S. Let $N=\operatorname{ker} f$. Let X be any arbitary ideal in S and the set $A=f^{-1}(X)$. Now show that $f^{-1}(X)$ is an ideal in R, where

$$
f^{-1}(X)=\{x \in R / f(x) \in X\}
$$

Let $a, b \in f^{-1}(X) \Rightarrow f(a), f(b) \in X$

$$
\begin{aligned}
& \Rightarrow f(a)-f(b) \in X \quad(\because X \text { is an ideal of } S) \\
& \Rightarrow f(a-b) \in X \\
& \Rightarrow a-b \in f^{-1}(X)
\end{aligned}
$$

Let $a \in f^{-1}(X)$ and $r \in R \Rightarrow f(a) \in X$ and $f(r) \in S$

$$
\begin{aligned}
& \Rightarrow f(a) f(r) \in X \quad(\because X \text { is an ideal of } S) \\
& \Rightarrow f(a r) \in X \\
& \Rightarrow a r \in f^{-1}(X)
\end{aligned}
$$

Similarly $r a \in f^{-1}(X)$. Therefore $f^{-1}(X)$ is an ideal in R.
Let A be an ideal in R then $f(A)$ is an ideal in S for if $f(a), f(b) \in f(A)$, where $a, b \in A$. Consider $f(a)-f(b)=f(a-b) \in f(A)(\because a-b \in A)$ Let $f(a) \in f(A)$ and $s \in S$. Since f is onto from R to $S \Rightarrow s \in S$ has pre image say r in R such that $f(r)=s$ then $f(a) s=f(a) f(r)=f(a r) \in f(A)$. Similarly $s f(a) \in f(A)$. Therefore $f(A)$ is an ideal in S Let $R^{\prime}=\{A: A$ is an ideal in R containing $N=\operatorname{ker} f\}$ and $S^{\prime}=\{$ all ideals of $S\}$. Define $F: R^{\prime} \rightarrow S^{\prime}$ by $F(A)=f(A)$
F is onto: Let $X \in S^{\prime} \Rightarrow X$ is an ideal in $S \Rightarrow f^{-1}(X)$ is an ideal in R

Let $A=f^{-1}(X)$. We shall show that $f\left(f^{-1}(X)\right)=X$.
Let $f(a) \in f\left(f^{-1}(X)\right)$, where $a \in f^{-1}(X)$
Since $a \in f^{-1}(X) \Rightarrow f(a) \in X$

$$
\begin{equation*}
\Rightarrow f\left(f^{-1}(X)\right) \subset X \tag{a}
\end{equation*}
$$

Let $x \in X$ then since f is onto there exists $a \in R$ such that $f(a)=x$ $\Rightarrow f(a) \in X \Rightarrow a \in f^{-1}(X)$ then $x=f(a) \in f\left(f^{-1}(X)\right)$

$$
\Rightarrow X \subset f\left(f^{-1}(X)\right)
$$

On using (10.3.1(a)) and (10.3.1(b)) we get $X=f\left(f^{-1}(X)\right)$, where $f^{-1}(X)=$ A is an ideal in R. We shall show that $N \subset A$, where $A=\{x \in R: f(x) \in X\}$
Let $x \in N$ then $f(x)=\overline{0} \quad(\therefore X$ is an ideal of $S \Rightarrow \overline{0} \in X)$
$\Rightarrow f(x) \in X \Rightarrow x \in f^{-1}(X) \Rightarrow x \in A$. Therefore $N \subset A$
\therefore for every $X \in S^{\prime} \exists A=f^{-1}(X) \in R^{\prime}$ such that $F(A)=f(A)=$ $f\left(f^{-1}(X)\right)=X$. Hence F is onto.
F is one-one: Let $F(A)=F(B)$, where A, B are in R^{\prime} i.e., A and B are the ideals of R containing N.
$F(A)=F(B) \Rightarrow f(A)=f(B)$
we shall show that $f^{-1}(f(A))=A$
Let $a \in A \Rightarrow f(a) \in f(A) \Rightarrow a \in f^{-1}(f(A))$

$$
\begin{equation*}
\Rightarrow A \subset f^{-1}(f(A)) \tag{c}
\end{equation*}
$$

Let $x \in f^{-1}(f(A)) \Rightarrow f(x) \in f(A)$

$$
\begin{aligned}
& \Rightarrow f(x)=f(a), \quad \text { for some } a \in A \\
& \Rightarrow f(x)-f(a)=\overline{0} \\
& \Rightarrow f(x-a)=\overline{0} \\
& \Rightarrow x-a \in N=k \operatorname{erf} \quad \text { but } \quad N \subset A \\
& \Rightarrow x-a \in A
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow x \in A \\
& \Rightarrow f^{-1}(f(A)) \subset A \tag{d}
\end{align*}
$$

On using (10.3.1(c)) and (10.3.1(d)), we get $A=f^{-1}(f(A))$.
Similarly $f^{-1}(f(B))=B$

$$
\begin{aligned}
\therefore f(A)=f(B) & \Rightarrow f^{-1}(f(A))=f^{-1}(f(B)) \\
& \Rightarrow A=B . \text { Therefore } F \text { is one-one. }
\end{aligned}
$$

$\Rightarrow \exists$ a one-one correspondence between the ideals of R containing N and ideal of S^{\prime}.

Let A and B be an ideals in R such that $A \subsetneq B$ i.e., $A \subset B$, but $A \neq B$
$\Rightarrow f(A) \subset f(B)$, because if $f(a) \in f(A)$, where $a \in A$ and $A \subset B \Rightarrow a \in B$
$\Rightarrow f(a) \in f(B) \Rightarrow f(A) \subset f(B)$
if $f(A)=f(B)$ then $f^{-1}(f(A))=f^{-1}(f(B)) \Rightarrow A=B$ which is not true.
Therefore $f(A) \subsetneq f(B)$
Conversely let $f(A) \subsetneq f(B)$

$$
\begin{aligned}
& \Rightarrow f(A) \subset f(B) \\
& \Rightarrow f^{-1}(f(A)) \subset f^{-1}(f(B)) \Rightarrow A \subset B
\end{aligned}
$$

Also $A \neq B$ for if $A=B$ then $f(A)=f(B)$ which is not true. Therefore $A \neq B$ i.e., $A \subsetneq B$.
10.3.2 Theorem : If K is an ideal in a ring R then each ideal (right or left ideal) in R / K is of the form A / K where A is an ideal (right or left ideal) in R containing K.
Proof. Consider the canonical homomorphism $f: R \rightarrow R / K$ which is an onto homomorphism. Then by the correspondence theorem any ideal in R / K is of the form $f(A)$, where A is any ideal containing $\operatorname{ker} f=K$ then K is an ideal of $A \quad(A$ is an ideal of R and K is an ideal of $R \Rightarrow K \subset A)$
and $f(A)=\{f(x): x \in A\}=\{x+K: x \in A\}=A / K$.
\Rightarrow any ideal in R / K is of the form A / K where A is an ideal containing K.
10.3.3 Definition : Let R and S be rings. A mapping $f: R \rightarrow S$ is an anti-homomorphism if $f(x+y)=f(x)+f(y)$ and $f(x y)=f(y) f(x)$ for all $x, y \in R$. An anti-homomorphism which is both $1-1$ and onto is called an anti-isomorphism.
10.3.4 Example : Let $R=(R,+,$.$) be a ring. Define a binary operation$ o in R as x o $y=y . x$ for all $x, y \in R$ then prove that $(R,+, o)$ is a ring.

Sol. $(R,+)$ is an abelian group
Let $x, y \in R \Rightarrow y . x \in R \quad(\because(R,+,$.$) is a ring)$

$$
\Rightarrow x \text { o } y \in R
$$

Consider $x \circ(y \circ z)=x \circ(z y)$

$$
\begin{aligned}
& =(z y) x \\
& =z(y x) \\
& =z(x \circ b y) \\
& =(x \circ \circ y) \circ z
\end{aligned}
$$

Also $x \circ(y+z)=(x \circ y)+(x \circ z)$ and $(y+z) \circ x=(y \circ x)+(z \circ x)$
Therefore $(R,+, o)$ is a ring.
10.3.5 Definition : Let $(R,+,$.$) be a ring then the opposite ring of R$ written $R^{o p}$, is defined to be the ring $(R,+, o)$ where x o $y=y$. x for all $x, y \in R$.
10.3.6 Example : Prove that the homomorphism from the ring of integers Z to Z are the identity and zero mappings only.

Sol. If f is a zero mapping then f is a homomorphism, since $f(a+b)=0=0+0=f(a)+f(b) \quad \forall a, b \in Z$
and $f(a b)=0=f(a) f(b) \quad \forall a, b \in Z$
If f is a non zero homomorphism then consider
$(f(1))^{2}=f(1) f(1)=f(1.1)=f(1)$ and $f(1) \neq 0$
because if $f(1)=0$ for any $x \in Z$, we have

$$
f(x)=f(1 \cdot x)=f(1) f(x)=0 f(x)=0 \Rightarrow f=0 \text { which is not true. }
$$

$\therefore f(1) \neq 0$ and $f(1)^{2}=f(1)$.
i.e. $f(1)$ is a non zero idempotent element in $f(Z) \subset Z$.

But the only nonzero idempotent element in Z is $1 \Rightarrow f(1)=1$
Now consider $f(n)=(1+1+1+\ldots+1) \quad(n$ times if $n>0)$

$$
\begin{aligned}
& =f(1)+f(1)+\ldots+f(1) \quad(n \text { times }) \\
& =\mathrm{n} \text { if } n>0 \quad(\because f(1)=1)
\end{aligned}
$$

Also $f(n)=0$ if $n=0$.
If $n<0$ then

$$
\begin{aligned}
f(n) & =(-1-1-1-\ldots-1) \\
& =f(-1)+f(-1)+\ldots+f(-1) \quad(n \text { times }) \\
& =(-1)+(-1)+(-1)+\ldots+(-1) \quad(n \text { times }) \\
& =-n \text { if } n<0
\end{aligned}
$$

$$
\therefore f(n)=n \forall n \in Z \text {. Therefore } f \text { is identity mapping. }
$$

10.3.7 Example : Let A and B be ideals in R such that $B \subseteq A$ then prove that $R / A \simeq(R / B) /(A / B)$.

Sol. Define a mapping $f: R / B \rightarrow R / A$ by $f(x+B)=x+A \quad \forall \quad x \in R$ then f is well defined if $x_{1}+B=x_{2}+B$ then $x_{1}-x_{2}+B=B \Rightarrow x_{1}-x_{2} \in B$ But $B \subseteq A \Rightarrow x_{1}-x_{2} \in A$

$$
\begin{aligned}
& \Rightarrow x_{1}-x_{2}+A=A \\
& \Rightarrow x_{1}+A=x_{2}+A
\end{aligned}
$$

$$
\Rightarrow f\left(x_{1}+B\right)=f\left(x_{2}+B\right)
$$

We shall show that f is an onto homomorphism
Consider $f\left(\left(x_{1}+B\right)+\left(x_{2}+B\right)\right)=f\left(x_{1}+x_{2}+B\right)$

$$
\begin{aligned}
& =x_{1}+x_{2}+A \\
& =\left(x_{1}+A\right)+\left(x_{2}+A\right) \\
& =f\left(x_{1}+B\right)+f\left(x_{2}+B\right)
\end{aligned}
$$

Also $\quad f\left(\left(x_{1}+B\right) \cdot\left(x_{2}+B\right)\right)=f\left(x_{1} x_{2}+B\right)$

$$
\begin{aligned}
& =x_{1} x_{1}+A \\
& =\left(x_{1}+A\right)\left(x_{2}+A\right) \\
& =f\left(x_{1}+B\right) f\left(x_{2}+B\right)
\end{aligned}
$$

$\therefore f$ is a homomorphism.
f is onto: Since for every $x+A \in R / A$, we have $x \in R$ such that
$f(x+B)=x+A$
$\Rightarrow f$ is onto.
Now kerf $=\{x+B \in R / B: f(x+B)=\overline{0}\}$

$$
\begin{aligned}
& =\{x+B: x+A=A\} \\
& =\{x+B: x \in A\}=A / B
\end{aligned}
$$

Then by first isomorphism theorem we get, $(R / B) /(A / B) \simeq R / A$.
10.3.8 Example : Prove that any ring R can be embedded in a ring S with unity.

Sol. Let S be the cartesian product of R and the set of integers Z
i.e., $S=R \times Z$.

Define the binary operations + and . in S by $(a, m)+(b, n)=(a+b, m+n)$
and $(a, m) .(b, n)=(a b+n a+m b, m n)$, where $a, b \in R$ and $m, n \in Z$
Consider $(a, m)-(b, n)=(a-b, m-n)$, where, $a-b \in R$ and $m-n \in Z$
$\therefore S$ is an abelian group under addition and also
$(a, m) .(b, n)=(a b+n a+m b, m n) \in R \times Z \quad(\because a b+n a+m b \in R$ and $m n \in Z$, where $a b \in R, n a=a+\ldots+a \in R, m b=b+\ldots+b \in R)$

Therefore S is a ring.
The unity is given by $(0,1)$, because $(a, m) \cdot(0,1)=(0+1 a+0, m 1)=(a, m)$
Similarly $(0,1) .(a, m)=(0+0+a, m)=(a, m)$
Define a mapping $f: R \rightarrow S$ by $f(a)=(a, 0) \quad \forall a \in R$ then f is a homomorphism.

Consider $f(a+b)=(a+b, 0)$

$$
\begin{aligned}
& =(a, 0)+(b, 0) \\
& =f(a)+f(b) \quad \forall a, b \in R \\
f(a b)= & (a b, 0)=(a, 0)(b, 0)=f(a) f(b) \quad \forall a, b \in R
\end{aligned}
$$

\mathbf{f} is one-one: Let $f(a)=f(b) \Rightarrow(a, 0)=(b, 0) \Rightarrow a=b$
Therefore f is an embedding ring of R into S.
10.3.9 Example : Find all ideals of $Z /(10)$.

Sol. $Z /(10)=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}$
(0) and $Z /(10)$ are trivial ideals.

Also $(\overline{2})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ and $(\overline{5})=\{\overline{0}, \overline{5}\}$ are also ideal of $Z /(10)$
Therefore the ideals of $Z /(10)$ are (0), $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\},\{\overline{0}, \overline{5}\}$ and $Z /(10)$.
10.3.10 Example : Let R be a ring then prove that $\left(R_{n}\right)^{o p} \simeq\left(R^{o p}\right)_{n}$

Sol. Define a mapping $f:\left(R_{n}\right)^{o p} \rightarrow\left(R^{o p}\right)_{n}$ by $f(A)=t_{A}$, the transpose of A. Recall that as sets $R=R^{o p}$ and $R_{n}=\left(R_{n}\right)^{o p}$ then by the definition of the transpose of a matrix $t_{A+B}=t_{A}+t_{B} \quad$ so $\quad f(A+B)=f(A)+f(B)$.
We now show that $f(A \circ B)=f(A) f(B)$, where the multiplication of matrices $f(A)$ and $f(B)$ is in the ring $\left(R^{o p}\right)_{n}$

Assume $A=\left(a_{i j}\right), \quad B=\left(b_{i j}\right)$

$$
f(A)=t_{A}=\left(a_{i j}^{\prime}\right) \text { and } f(B)=t_{B}=\left(b_{i j}^{\prime}\right) \text { then }
$$

$a_{i j}^{\prime}=a_{j i}$ and $b_{i j}^{\prime}=b_{j i}$ for all $1 \leq i, j \leq n$
Now $f(A \circ B)=f(B A)=t_{B A}$
The (i, j) entry of $t_{B A}$ is the (j, i) entry of $B A$ which is given by

$$
\sum_{k=1}^{n} b_{j k} a_{k i}=\sum_{k=1}^{n} a_{k i} \text { o } b_{j k}=\sum_{k=1}^{n} a_{i k}^{\prime} \text { o } b_{k j}^{\prime}=(i, j) \quad \text { entry of } \quad t_{A} t_{B} \in\left(R^{o p}\right)_{n}
$$

Hence $t_{B A}=t_{A} t_{B}$

$$
\therefore f(A \circ B)=f(A) f(B)
$$

f is one-one: If $f(A)=f(B) \Rightarrow t_{A}=t_{B} \Rightarrow A=B$. Also f is onto.
Hence $\left(R_{n}\right)^{o p} \simeq\left(R^{o p}\right)_{n}$

10.4 Summary

In this lesson we have defined homomorphism of rings. Also we have observed that the kernel of homomorphism is $\{0\}$ if and only if it is one-one. Further we have proved fundamental theorem of homomorphism and correspondence theorem.

10.5 Model Examination Questions

(1) Show that any nonzero homomorphism of a field F into a ring R is one-one.
(2) Let $f: F \rightarrow F$ be a nonzero homomorphism of a field F into itself then show that f need not be onto.
(3) Let R be a ring. Show that R is anti-isomorphic to $R^{o p}$.

10.6 Glossary

homomorphism of rings, isomorphism of rings, correspondence theorem, anti homomorphism of rings.

LESSON-11

Sum and Direct Sum of Ideals

11.1 Introduction : In this lesson, we study sum and direct sum of ideals.
11.2 Definition : Let $A_{1}, A_{2}, \ldots, A_{n}$ be a family of right ideals in a ring R. Then the smallest right ideal of R containing each $A_{i}, 1 \leq i \leq n$
(i.e., the intersection of all right ideals in R containing each A_{i}) is called the sum of $A_{1}, A_{2}, \ldots, A_{n}$ and is denoted by $A_{1}+A_{2}+\ldots+A_{n}$.
11.3 Theorem : If $A_{1}, A_{2}, \ldots, A_{n}$ are right ideals in a ring R, then $S=\left\{a_{1}+a_{2}+\ldots+a_{n} / a_{i} \in A_{i}, 1 \leq i \leq n\right\}$ is the sum of right ideals $A_{1}, A_{2}, \ldots, A_{n}$.

Proof. Let $S=\left\{a_{1}+a_{2}+\ldots+a_{n} / a_{i} \in A_{i}, 1 \leq i \leq n\right\}$.
To prove that S is an ideal in R
Let $x, y \in S$ and $r \in R$, then $x=a_{1}+a_{2}+\ldots+a_{n}$ and $y=b_{1}+b_{2}+\ldots+b_{n}$ where $a_{i}, b_{i} \in A_{i}, 1 \leq i \leq n$
Now $x-y=\left(a_{1}+a_{2}+\ldots+a_{n}\right)-\left(b_{1}+b_{2}+\ldots+b_{n}\right)$

$$
=\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)+\ldots+\left(a_{n}-b_{n}\right) \in S
$$

$\Rightarrow x-y \in S$. (since A_{i} is an ideal, $a_{i}, b_{i} \in A_{i} \Rightarrow a_{i}-b_{i} \in A_{i}, 1 \leq i \leq n$)
Also \quad xr $=\left(a_{1}+a_{2}+\ldots+a_{n}\right) r=a_{1} r+a_{2} r+\ldots+a_{n} r$

$$
\Rightarrow x r \in S \quad\left(\text { since } \quad a_{i} r \in A_{i} \text { for } 1 \leq i \leq n\right)
$$

Thus S is a right ideal of R.
If $a_{1} \in A_{1}$ then a_{1} can be written as $a_{1}=a_{1}+0+\ldots+0$ and by the definition of S we get $a_{1} \in S \quad \Rightarrow \quad A_{1} \subset S$.
Similarly $A_{2}, A_{3}, \ldots, A_{n}$ are contained in S.
Let T be any right ideal of R contained each A_{i} then $a_{1}, a_{2}, \ldots, a_{n} \in T$
$\Rightarrow a_{1}+a_{2}+\ldots+a_{n} \in T \quad$ (since T is an ideal). Therefore $S \subset T$.
$\therefore S$ is the smallest right ideal of R containing each A_{i}. i.e., S is the inter-
section of all the right ideal in R containing each A_{i}. Therefore S is the sum of the right ideals $A_{1}, A_{2}, \ldots, A_{n}$.
11.4 Note : The sum of right (left) ideals $A_{1}, A_{2}, \ldots, A_{n}$ in a ring R is denoted by $A_{1}+A_{2}+\ldots+A_{n}=\sum_{i=1}^{n} A_{i}$.
11.5 Definition : A sum $A=\sum_{i=1}^{n} A_{i}$ of right (left) ideal in R is called a direct sum if each element $a \in A$ is uniquely expressible in the from $\sum_{i=1}^{n} a_{i}$, where $a_{i} \in A_{i}, 1 \leq i \leq n$. If the sum $A=\sum_{i=1}^{n} A_{i}$ is a direct sum we write it as $A=A_{1} \oplus A_{2} \oplus \ldots \oplus A_{n}=\oplus \sum_{i=1}^{n} A_{i}$.
11.6 Theorem : Let $A_{1}, A_{2}, \ldots, A_{n}$ be right (left) ideals in a ring R then the following are equivalent
(i) $A=\sum_{i=1}^{n} A_{i}$ is a direct sum.
(ii) If $0=\sum_{i=1}^{n} a_{i}, a_{i} \in A_{i}$ then $a_{i}=0$, for $i=1,2, \ldots, n$.
(iii) $A_{i} \cap \sum_{\substack{j=1 \\ j \neq i}}^{n} A_{j}=(0), i=1,2, \ldots, n$

Proof. (i) \Rightarrow (ii)
Assume that (i) is true. Suppose $\sum_{i=1}^{n} a_{i}=0$ and since A is direct sum of $A_{1}, A_{2}, \ldots, A_{n}$, each element of A has a unique representation
we have $0 \in A$ and $0=0+0+\ldots+0$

$$
\begin{aligned}
& \quad \because a_{1}+a_{2}+\ldots+a_{n}=0=0+0+\ldots+0 \\
& \Rightarrow a_{1}=a_{2}=\ldots=a_{n}=0 \text {. Thus } \sum_{i=1}^{n} a_{i}=0 \Rightarrow a_{i}=0, \text { for } i=1,2, \ldots, n \\
& (\text { ii }) \Rightarrow(\text { iii })
\end{aligned}
$$

Assume that (ii) is ture. Let $x \in A_{i} \cap \sum_{\substack{j=1 \\ j \neq i}}^{n} A_{j}$ then $x \in A_{i}$ and $x \in \sum_{\substack{j=1 \\ j \neq i}}^{n} A_{j}$
$\Rightarrow x=a_{1}+a_{2}+\ldots+a_{i-1}+a_{i+1}+\ldots+a_{n}$
$\Rightarrow 0=a_{1}+a_{2}+\ldots+a_{i-1}+(-x)+a_{i+1}+\ldots+a_{n}$
from (ii) we get each $a_{j}=0$, for $j=1,2, \ldots, n, j \neq i$ and $-x=0 \Rightarrow x=0$
Thus $A_{i} \cap \sum_{\substack{j=1 \\ j \neq i}}^{n} A_{j}=(0)$.
(iii) \Rightarrow (i)

Assume that (iii) is ture. Let $a \in A=\sum_{i=1}^{n} A_{i}$ and assume that a has two representations say $a=a_{1}+a_{2}+\ldots+a_{n}$ and $a=b_{1}+b_{2}+\ldots+b_{n}$, where $a_{i}, b_{i} \in A_{i}$ for $1 \leq i \leq n$
$\Rightarrow\left(a_{1}+a_{2}+\ldots+a_{n}\right)-\left(b_{1}+b_{2}+\ldots+b_{n}\right)=0$
$\Rightarrow\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)+\ldots+\left(a_{n}-b_{n}\right)=0$
$\Rightarrow a_{1}-b_{1}=-\left(a_{2}-b_{2}\right)-\ldots-\left(a_{n}-b_{n}\right)$
Now A_{1} is an ideal of R, we have $a_{1}-b_{1} \in A_{1}$ and
$-\left(a_{2}-b_{2}\right)-\ldots-\left(a_{n}-b_{n}\right) \in A_{2}+A_{3}+\ldots+A n=\sum_{j=2}^{n} A_{i}$
$\Rightarrow a_{1}-b_{1} \in A_{1} \cap \sum_{j=2}^{n} A_{j}$, but by (iii) we have $A_{i} \cap \sum_{\substack{j=1 \\ j \neq i}}^{n} A_{j}=(0)$
Therefore $a_{1}-b_{1}=0 \Rightarrow a_{1}=b_{1}$. Similarly we get $a_{2}=b_{2}, \ldots, a_{n}=b_{n}$.
Hence each $a \in A=\sum_{i=1}^{n} A_{i}$ has a unique representation. $\therefore A$ is a direct sum.
11.7 Theorem : Let $R_{1}, R_{2}, \ldots, R_{n}$ be a family of rings and let $R=R_{1} \times$ $R_{2} \times \ldots \times R_{n}$ be their direct product. Let $R_{i}^{*}=\left\{\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right) / a_{i} \in\right.$ $\left.R_{i}\right\}$ then $R=\oplus \sum_{i=1}^{n} R_{i}^{*}$ is a direct sum of ideals R_{i}^{*} and $R_{i}^{*} \simeq R_{i}$ as rings.
On the other hand if $R=\oplus \sum_{i=1}^{n} A_{i}$, a direct sum of ideal of R then $R \simeq$ $A_{1} \times A_{2} \times \ldots \times A_{n}$ the direct product of the A_{i} 's considered as rings on their own right.

Proof. Clearly R_{i}^{*} 's are ideals in R and $R=R_{1}^{*}+R_{2}^{*}+\ldots+R_{n}^{*}$.
We prove that R is a direct sum of ideals R_{i}^{*}
Let $x \in R_{i}^{*} \cap \sum_{\substack{j=1 \\ j \neq i}}^{n} R_{j}^{*}$ then $x=\left(0,0, \ldots, a_{i}, 0, \ldots, 0\right)=\left(a_{1}, a_{2}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{n}\right)$
$\Rightarrow a_{i}=0$ and hence $x=0$. Therefore $R=\oplus \sum_{i=1}^{n} R_{i}^{*}$
For the second part we note that, if $x \in R$ then x can be uniquely expressed as $a_{1}+a_{2}+\ldots+a_{n}, a_{i} \in A_{i}, 1 \leq i \leq n$.
Define a mapping $f: \oplus \sum_{i=1}^{n} A_{i} \rightarrow A_{1} \times A_{2} \times \ldots \times A_{n}$ by
$f\left(a_{1}+a_{2}+\ldots+a_{n}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right), f$ is well defined since $\sum_{i=1}^{n} A_{i}$ is direct sum. It is also clear that f is both one-one and onto.
f is homo : Let $x, y \in \sum_{i=1}^{n} A_{i}$ then $x=a_{1}+a_{2}+\ldots+a_{n}$ and $y=$ $b_{1}+b_{2}+\ldots+b_{n}$, where $a_{i}, b_{i} \in A_{i}, 1 \leq i \leq n$, it is easy to see that $f(x+y)=f(x)+f(y)$.

Now to show that $f(x y)=f(x) f(y)$, since $a_{i}, b_{i} \in A_{i}, 1 \leq i \leq n$ then for $i \neq j, a_{i} b_{j}=0$ and $a_{i} b_{j} \in A_{i} \cap A_{j}=(0)$. Therefore f is isomorphism.
11.8 Note : The direct sum $R=\oplus \sum_{i=1}^{n} A_{i}$ is also called the (internal) direct sum of ideals $A_{1}, A_{2}, \ldots, A_{n}$ in R and the direct product $A_{1} \times A_{2} \times \ldots \times A_{n}$ is called the (external) direct sum of the family of ideals $A_{1}, A_{2}, \ldots, A_{n}$.
11.9 Definition : A right (left) ideal I in a range R is called minimal if (i) $I \neq(0)$ and
(ii) If J is a non-zero right (left) ideal of R contained in I then $J=I$.
11.10 Example : If R is a divison ring then R itself is a minimal right ideal as well as minimal left ideal.
11.11 Example : For any two ideals A and B in a ring R then
(i) $\frac{A+B}{B} \simeq \frac{A}{A \cap B}$
(ii) $\frac{A+B}{A \cap B} \simeq \frac{A+B}{A} \times \frac{A+B}{B} \simeq \frac{B}{A \cap B} \times \frac{A}{A \cap B}$

Sol. (i) Let A and B be two ideals in a ring R then
$A+B=\left\{a_{i}+b_{i}: a_{i} \in A, b_{i} \in B\right\}$ and $A+B$ is an ideal in R.
Let $x=a_{1}+b_{1}$ and $y=a_{2}+b_{2}$ be any two elements of $A+B$ then

$$
\begin{aligned}
x-y=\left(a_{1}+b_{1}\right) & -\left(a_{2}+b_{2}\right)=a_{1}+\left(b_{1}-a_{2}\right)-b_{2} \\
& =\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) \in A+B \quad(\because A, B \text { are ideals })
\end{aligned}
$$

Also $r x=r\left(a_{1}+b_{1}\right)=r a_{1}+r b_{1} \in A+B, \quad$ for any $r \in R$
Similarly $x r=\left(a_{1}+b_{1}\right) r \in A+B$.
Therefore $A+B$ is an ideal in R and also $A \cap B$ is an ideal in R.
Since B is an ideal of R such that $B \subseteq A+B \Rightarrow B$ is an ideal of $A+B$ $\Rightarrow \frac{A+B}{B}$ is a Quotient ring.
Define $f: A \rightarrow \frac{A+B}{B}$ by $f(a)=a+B \quad \forall a \in A$ then f is a onto homomorphism
f is homomorphism : $f\left(a_{1}+a_{2}\right)=\left(a_{1}+a_{2}\right)+B=\left(a_{1}+B\right)+\left(a_{2}+B\right)=$
$f\left(a_{1}\right)+f\left(a_{2}\right)$ and $f\left(a_{1} a_{2}\right)=a_{1} a_{2}+B=\left(a_{1}+B\right)\left(a_{2}+B\right)=f\left(a_{1}\right) f\left(a_{2}\right)$.
f is onto: Let $x+B \in \frac{A+B}{B}$, where $x=a_{1}+b_{1} \in A+B$
consider $f\left(a_{1}\right)=a_{1}+B=a_{1}+b_{1}+B=x+B\left(\right.$ since $\left.b_{1}+B=B\right)$.
Therefore f is onto.
Now ker $f=\{a \in A ; f(a)=\overline{0}\}=\{a \in A ; a+B=B\}$

$$
=\{a \in A ; a \in B\}=A \cap B .
$$

Then by first Isomorphism theorem we get $\frac{A}{A \cap B} \simeq \frac{A+B}{B}$.
(ii) To prove that $\frac{A+B}{A \cap B} \simeq \frac{A+B}{A} \times \frac{A+B}{B} \simeq \frac{B}{A \cap B} \times \frac{A}{A \cap B}$

Let $g: A+B \rightarrow \frac{A+B}{A} \times \frac{A+B}{B}$ defined by $g(x)=(x+A, x+B)$, where $x \in A+B$.
g is homomorphism: For any $x, y \in A+B$, we have

$$
\begin{aligned}
g(x+y) & =(x+y+A, x+y+B)=(x+A+y+A, x+B+y+B) \\
& =(x+A, x+B)+(y+A, y+B)=g(x)+g(y) \\
g(x y)= & (x y+A, x y+B)=((x+A)(y+A),(x+B)(y+B)) \\
& =(x+A, x+B)(y+A, y+B)=g(x) g(y)
\end{aligned}
$$

Therefore g is homomorphism.
g is onto: Let $(x+A, y+B) \in \frac{A+B}{A} \times \frac{A+B}{B}$, where $x, y \in A+B$ such that $x=a_{1}+b_{1}, y=a_{2}+b_{2}, \quad a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.

Therefore $(x+A, y+B)=\left(a_{1}+b_{1}+A, a_{2}+b_{2}+B\right)=\left(b_{1}+A, a_{2}+B\right)$
Now $a_{2}+b_{1} \in A+B$ be such that $g\left(a_{2}+b_{1}\right)=\left(a_{2}+b_{1}+A, a_{2}+b_{1}+B\right)=$ $\left(b_{1}+A, a_{2}+B\right)=(x+A, y+B)$.

For any $(x+A, y+B) \in \frac{A+B}{A} \times \frac{A+B}{B}$ there exists $a_{2}+b_{1} \in A+B$ such that $g\left(a_{2}+b_{1}\right)=(x+A, y+B)$. Therefore g is onto.

Now ker $g=\{x \in A+B / g(x)=(A, B)\}$

$$
\begin{aligned}
& =\{x \in A+B /(x+A, x+B)=(A, B)\} \\
& =\{x \in A+B / x+A=A \text { and } x+B=B\} \\
& =\{x \in A+B / x \in A \text { and } x \in B\}=A \cap B
\end{aligned}
$$

Hence g is homomorphism from $A+B$ onto $\frac{A+B}{A} \times \frac{A+B}{B}$ with kernel $A \cap B$, then by first isomorphism theorem we get

$$
\begin{equation*}
\frac{A+B}{A \cap B} \simeq \frac{A+B}{A} \times \frac{A+B}{B} \tag{18.11.1}
\end{equation*}
$$

From (i), we have $\frac{A+B}{B} \simeq \frac{B}{A \cap B}$ and $\frac{A+B}{B} \simeq \frac{A}{A \cap B}$ then the equation (18.11.1) becomes

$$
\frac{A+B}{A \cap B} \simeq \frac{B}{A \cap B} \times \frac{A}{A \cap B}
$$

If $R=A+B$ then we have

$$
\frac{R}{A \cap B} \simeq \frac{R}{A} \times \frac{R}{B}
$$

11.12 Summary

In this lesson we defined external direct product and also established equivalent conditions which determines the external direct product.

11.13 Glossary

Direct sum, External direct product.

LESSON-12

MAXIMAL,PRIME AND NILPOTENT IDEALS

12.1 Introduction : In this lesson we study and characterise maximal,prime ideals and simple rings.Further we introduced the notions of nilpotent and nil ideals. Moreover using Zorn's lemma, we prove an existence theorem for maximal ideal.

12.2 Co-maximal Ideal

12.2.1 Definition : Two ideals A, B in any ring R are called co-maximal if $A+B=R$.
12.2.2 Example : If $A=\left(p_{1}^{e_{1}}\right)$ and $B=\left(p_{2}^{e_{2}}\right)$ are ideals in Z generated by $p_{1}^{e_{1}}$ and $p_{2}^{e_{2}}$ respectively, where p_{1}, p_{2} are distinct primes and e_{1}, e_{2} are positive integers then $A+B=Z$. Hence A, B are co-maximal ideals in Z.

12.3 Maximal Ideal

12.3.1 Definition : An ideal A in a ring R is called maximal ideal if (i) $A \neq R$ and (ii) For any ideal $B \supseteq A$ either $B=A$ or $B=R$
i.e., An ideal A in a ring R is called a maximal ideal if $A \neq R$ and if for any ideal B in R such that $A \subset B \subset R$ then either $B=A$ or $B=R$.
12.3.2 Theorem : An ideal A in a ring R is maximal ideal if and only if for all ideals $X \not \subset A$. the pair X, A is co-maximal.

Proof. Let A be a maximal ideal of R. Let X be any ideal in R.
If $X \subset A$ then $X+A=A$ and the pair X, A is not co-maximal.
Suppose $X \not \subset A$ then $X+A$ is an ideal in R and $A \subset X+A \subset R$.
Since A is maximal ideal we get $X+A=A$ or $X+A=R$.
Since $X \not \subset A$ we get $X+A=R$. Therefore X, A are co-maximal.
Conversely assume that X, A are co-maximal for all $X \not \subset A$ then $X+A=R$.

Let B be any ideal in R such that $A \subset B \subset R$
we have either $B=A$ or $B=R$.
If $B \neq A$ then $B \not \subset A$ and $B+A=B$, since $A \subset B$.
But we have $B+A=R$ as B, A are co-maximal.
Therefore $B=R$. Hence A is maximal ideal.
12.3.3 Theorem : For any ring R and any ideals $A \neq R$. The following are equivalent.
(i) A is maximal.
(ii) The quotient ring R / A has no nontrivial ideals.
(iii) For any element $x \in R, x \notin A, A+(x)=R$.

Proof. Suppose A is an ideal in a ring R and $A \neq R$.
(i) \Rightarrow (ii)

Assume that (i) is true. We know that the ideals of R / A are of the from B / A, where B is an ideal in R containing A. Thus we have $A \subset B \subset R$.

Since A is maximal ideal we have $A=B$ or $B=R$.
Therefore B / A is either A or R / A.
If B / A is non zero then $B \neq A$ i.e., $A \subseteq B$ and $B \neq A \Rightarrow B=R$,
since A is maximal ideal then $B / A=R / A$.
Hence R / A has only two ideals, they are zero ideal and R / A itself.
$(\mathrm{ii}) \Rightarrow(\mathrm{iii})$
Assume that(ii) is true. Let R / A has no non trivial ideals . Let $x \in R$ and $x \notin A$ then $A+(x) \neq A$ and $A+(x)$ is an ideal of R properly containing A. Therefore, $A+(x) / A$ is an ideal of R / A and it is non zero ideal in R / A.

$$
\begin{aligned}
& \Rightarrow A+(x) / A=R / A \\
& \Rightarrow A+(x)=R
\end{aligned}
$$

$$
(\mathrm{iii}) \Rightarrow(\mathrm{i})
$$

Assume that (iii) is true. We have for any $x \in R, x \notin A, A+(x)=R$
Let us assume that $A \subset B \subset R$.
If $B=A$ then A is maximal ideal and there is nothing to prove.
If $B \neq A$, choose an element $x \in B, x \notin A$ then $A+(x)=R \quad$ (by(iii)).
Also since $A \subset B, x \in B$, where B is an ideal

$$
\begin{aligned}
& \Rightarrow A+(x) \subset B \\
& \Rightarrow R \subseteq B \text { and we have } B \subset R . \text { Hence } B=R .
\end{aligned}
$$

Therefore A is maximal ideal.

12.4 Simple Ring

12.4.1 Definition : A ring R is called a simple ring if the only ideals of R are the zero ideal and R itself (i.e., R has no nontrivial ideals.)
12.4.2 Example : (i) Every field is a simple ring.
(ii) A commutative simple ring with unity must be a field.
12.4.3 Theorem : In a non-zero commutative ring with unity then an ideal M is maximal ideal if and only if R / M is a field.
i.e., Let R be a commutative ring with unity then an ideal M in R is maximal ideal if and only if R / M is a field.

Proof. Let R be a non-zero commutative ring with unity then for any ideal M in R we have R / M is a commutative ring with unity, where $R / M=\bar{R}=\{a+M \mid a \in R\}=\{\bar{a} \mid a \in R\}$ and $\overline{1}=1+M$.
Let M be maximal ideal then by previous theorem R / M has no non-trivial ideal $\Rightarrow R / M$ is simple ring.

Let \bar{a} be any nonzero element in $\bar{R}=R / M$ then $\bar{a} \bar{R}$ is a nonzero ideal in \bar{R}. Since \bar{R} has no non-trivial ideals we get $\bar{a} \bar{R}=\bar{R} . \quad(a R$ is an ideal of R and
$\bar{a} \bar{R}$ is an ideal of \bar{R})
Now $\overline{1} \in \bar{R}=\bar{a} \bar{R}$ there exists $\bar{b} \in \bar{R}$ such that $\bar{a} \bar{b}=\overline{1}$
Since \bar{R} is commutative we have $\bar{b} \bar{a}=\overline{1}=\bar{a} \bar{b}$
Thus every nonzero element of \bar{R} is invertible in \bar{R}. Hence \bar{R} is a field.
Conversely assume that \bar{R} is a field then \bar{R} is a simple ring.
To prove that M is maximal ideal.
Let K be any ideal in R such that $M \subset K \subset R$.
If $K=M$ then there is nothing to prove.
If $K \neq M$ then K / M is an ideal in $\bar{R}=R / M$.
But \bar{R} has only trivial ideal and K / M is non zero ideal of R / M.
Therefore $K / M=R / M \Rightarrow K=R \Rightarrow M$ is maximal ideal in R.
12.4.4 Example : An ideal M in the ring if integer Z is a maximal ideal if and only if $M=(p)$, where p is some prime number.

Sol. We know that Z is Principal ideal ring then every ideal M in Z is of the form (n), for any integer n. Further $(n)=(-n)$. Therefore, we may assume that n is non negative integer.

Suppose $M=(n)$ is a maximal ideal in Z then $Z /(n)$ is a field.
To prove that n is prime number.
Assume that n is a composite number.
Let $n=n_{1} n_{2}$, where $n_{1}>1, n_{2}>1$ and $n_{1}<n, n_{2}<n$ then
$\bar{n}=\overline{n_{1} n_{2}}=\overline{n_{1}} \overline{n_{2}}=\overline{0} \quad$ (since $\bar{n}=\overline{0}$ is zero in $\left.Z /(n)\right)$
$\Rightarrow \overline{n_{1}}, \overline{n_{2}}$ are zero divisors in $Z /(n)$, where $\overline{n_{1}} \neq \overline{0}, \overline{n_{2}} \neq \overline{0}$
which is a contradiction to $Z /(n)$ is a field. Therefore n is a prime number
Conversely assume that $M=(p)$ is an ideal in Z, where p is prime number, then $Z /(p)=Z_{p}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{p-1}\}$ is a commutative ring with unity.

Let $\bar{a} \in Z /(p)$ and $\bar{a} \neq \overline{0}$ then a is not multiple of $p \Rightarrow p$ does not divides a i.e., $(p, a)=1$ and there exist $x, y \in Z$ such that $a x+p y=1$

$$
\begin{aligned}
& \Rightarrow \overline{a x+p y}=\overline{1} \\
& \Rightarrow \bar{a} \bar{x}+\bar{p} \bar{y}=\overline{1} \\
& \Rightarrow \bar{a} \bar{x}=\overline{1} \quad(\text { since } \bar{p}=\overline{0})
\end{aligned}
$$

$\Rightarrow \bar{a}$ is invertible in $Z /(p)$. Thus every non zero element in $Z /(p)$ is invertible.
Hence $Z /(p)$ is a field. Thereofere $M=(p)$ is a maximal ideal.
12.4.5 Example : If R is the ring of 2×2 matrices over a field F of the form $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$, where $a, b \in F$ then the set $M=\left\{\left.\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right) \right\rvert\, b \in F\right\}$ is a maximal ideal in R.
Sol. $R=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in F\right\}=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$ is a ring, where F is a field.
Let $M=\left\{\left.\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right) \right\rvert\, b \in F\right\}=\left(\begin{array}{cc}0 & F \\ 0 & 0\end{array}\right)$ is an ideal of R.
Let $S=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \right\rvert\, a \in F\right\}=\left(\begin{array}{cc}F & 0 \\ 0 & 0\end{array}\right)$ then S is a subring of R.
Let $f: S \rightarrow F$ defined by $f\left(\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)\right)=a$ then f is homomorphism, one-one and onto $\Rightarrow S \simeq F$. Since F is a field then S is also field.
Further $g: R \rightarrow S$ defined by $g\left(\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ then g is onto homomorphic. Now
ker $g=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \in R \left\lvert\, g\left(\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right.\right\}$

$$
\begin{aligned}
& =\left\{\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) \left\lvert\,\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right.\right\} \\
& =\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) \right\rvert\, a=0\right\} \\
& =\left\{\left.\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) \right\rvert\, b \in F\right\}=M .
\end{aligned}
$$

Then by the fundamental theorem of homomorphism we get $R / M \backsim S$. Since S is a field then R / M is field. Hence M is a maximal ideal in R.

12.5 Product of Ideals

12.5.1 Definition : Let A and B be right (left) ideals in a ring R then the set

$$
\left\{\sum_{\text {finite sum }} a_{i} b_{i} \mid a_{i} \in A, b_{i} \in B\right\}
$$

which is a right (left) ideal in R is called the product of A and B and written as $A B$.
12.5.2 Note : (i) If A and B are right ideals in R. then their product $A B$ is a right ideal in R.
(ii) If A and B are ideals in R then $A \cap B$ is also an ideal in R.
12.5.3 Theorem : Let A, B and C be right (left) ideals in a ring R then
(i) $(A B) C=A(B C)$
(ii) $A(B+C)=A B+A C$ and $(B+C) A=B A+C A$.

Proof.(i) Follows from the associativity of multiplication in R.
(ii) Clearly $A B, A C \subset A(B+C)$.

Also if $a \in A, b \in B, \quad c \in C$ then $a(b+c)=a b+a c \in A B+A C$
Hence $A B+A C=A(B+C)$.
12.5.4 Definition : If $A_{1}, A_{2}, \ldots, A_{n}$ are right (left) ideals in a ring R then their product is denoted by $A_{1} A_{2} \ldots A_{n}$ and defined as

$$
A_{1} A_{2} \ldots A_{n}=\left\{\sum_{\text {finite sum }} a_{1} a_{2} \ldots a_{n} \mid a_{i} \in A_{i}, i=1,2, \ldots n\right\}
$$

12.5.5 Definition : If $A_{1}=A_{2}=\ldots=A_{n}$ then their product is A^{n}.
12.5.6 Note : (i) If p is prime number and $p / a b$ then p / a or p / b.
(ii) If $a b \in(p)$ then $a \in(p)$ or $b \in(P)$.

Equivalently if $(a)(b) \subseteq(a b) \subset(p)$ then $(a) \subset(p)$ or $(b) \subset(p)$.

12.6 Prime Ideal

12.6.1 Definition : An ideal P in a ring R is called a prime ideal if $P \neq R$ and has the following property.
If A and B are ideals in R such that $A B \subseteq P$ then either $A \subseteq P$ or $B \subseteq P$.
12.6.2 Theorem : If R is a ring with unity then each maximal ideal is prime ideal.

Proof. Let M be any maximal ideal in R.
Let A, B are two ideals in R such that $A B \subseteq M$.
If $A \subseteq M$ then M is a prime ideal.
Suppose $A \not \subset M$ then \exists an element $a \in A$ and $a \notin M \Rightarrow M+(a)=R$.
But $a \in A \Rightarrow(a) \subseteq A \quad(\because A$ is an ideal $)$

$$
\Rightarrow M+(a) \subseteq M+A
$$

$$
\Rightarrow R \subseteq M+A \text {, but } M+A \subseteq R \text { always. Therefore } M+A=R
$$

Since $1 \in R \Rightarrow 1 \in M+A \Rightarrow 1=m+a$, for some $a \in A, m \in M$ (since $A \not \subset M$ then A, M are co maximal ideals and $A+M=R$) Let $b \in B$ then $b=m b+a b \in M \quad$ (since $m \in M$ and M is ideal $\Rightarrow m b \in M$ and $a b \in A B \subseteq M \Rightarrow a b \in M \Rightarrow m b+a b \in M)$
$\Rightarrow b \in M$.
$\Rightarrow B \subseteq M$. Hence M is a prime ideal in R.
12.6.3 Note : The converse of the above theorem is not true in general.
12.6.4 Example : The ideal (0) in the ring of integers Z is prime ideal but not maximal ideal.

Sol. Let $a, b \in Z$ and $a b \in(0) \Rightarrow a b=0 \Rightarrow a=0$ or $b=0$
$\Rightarrow(a)=(0)$ or $(b)=(0) \Rightarrow(0)$ is a prime ideal but not maximal ideal, since $(0) \subset(x) \subset Z$ for any $x \in Z$ where $x \neq 0$.

For example $(0) \subset(2) \subset Z$.
12.6.5 Theorem : If R is a commutative ring then prove that an ideal P in R is prime ideal iff $a b \in P, a \in R, b \in R \Rightarrow a \in P$ or $b \in P$.
Proof. We have R is a commutative ring and P is an ideal in $R, P \neq R$.
Suppose P is a prime ideal in R (i.e., $P \neq R$) and if A, B are ideals in R such that $A B \subseteq P$ then $A \subseteq P$ or $B \subseteq P$. Let $a b \in P$, where $a, b \in R$.

Since R is a commutative ring, we have $(a)=\{n a+a r / n \in Z, r \in R\}$
$(b)=\{m b+b s / m \in Z, s \in R\}$
Now $(a)(b)=\left\{\sum_{\text {finitesum }} x y \mid x \in(a), y \in(b)\right\}$
The element $x y=(n a+a r)(m b+b s)$

$$
=n m a b+n a b s+m a b r+a b r s
$$

Since P is prime ideal and $a b \in P$ and $r, s \in R$
$\Rightarrow x y \in P \quad$ (The finite sum of such element also belongs to P)
$(a)(b) \subseteq P \Rightarrow(a) \subseteq P$ or $(b) \subseteq P \quad(P$ is prime ideal)
$\Rightarrow a \in P$ or $b \in P \quad$ (since $a b \in P$ and P is an ideal R we get
$(n a+a r)(m b+b s)$ or finite sum of such products are in $P)$
Conversely assume that $a b \in P, a, b \in R \Rightarrow a \in P$ or $b \in P$

Let A and B be ideals in R such that $A B \subseteq P$.
If $A \subseteq P$ then P is prime ideal.
Suppose $A \not \subset P$, there exists an element $a \in A$ such that $a \notin P$ then for each $b \in B$, we have $a b \in A B \subseteq P \Rightarrow a b \in P \quad \forall b \in B$

But by our hypothesis $b \in P \quad$ (since $a \notin P$)
$\Rightarrow B \subseteq P \quad(a b \in P \Rightarrow a \in p$ or $b \in P)$
Thus $A B \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$.
Hence P is a prime ideal.
12.6.6 Example : In an integral domain R prove that the ideal $\{0\}$ is prime ideal.

Sol. Let R be an integral domain
If $a b \in(0), a, b \in R$ then $a b=0 \Rightarrow a=0$ or $b=0 \quad$ (R has no zero divisors)
$\Rightarrow a \in(0)$ or $b \in(0)$. Hence (0) is a prime ideal in R.
12.6.7 Example : A commutative ring R is an integral domain iff (0) is a prime ideal.

Sol. Let R be a commutative ring.
If R is an integral domain then (0) is a prime ideal.
Suppose (0) is a prime ideal.
Thus if $a b \in(0), a, b \in R$ then either $a \in(0)$ or $b \in(0)$
$\therefore a b=0 \Rightarrow a=0$ or $b=0$
$\Rightarrow R$ has no zero divisors. Hence R is an integral domain.
12.6.8 Example : For each prime integer p prove that the ideal (p) in the ring of integers Z is prime ideal.

Sol. For $a, b \in Z$, Let $a b \in(p)$ then $p / a b \Rightarrow p / a$ or p / b
$\Rightarrow a \in(p)$ or $b \in(p)$. Hence (p) is a prime ideal.
12.6.9 Theorem : Let R be a commutative principle ideal domain with unity then prove that any non zero ideal $P \neq R$ is prime ideal iff P is a maximal ideal.

Proof. Let R be commutative principal ideal domain with unity.
Let $P \neq R$ be any nonzero prime ideal in R and $a b \in P \Rightarrow a \in P$ or $b \in P$.
Suppose P is not maximal ideal then there exists an ideal M in R such that $P \subset M \subset R \Rightarrow P \neq M$ and $M \neq R$. Since R is a principal ideal domain we have $M=b R$ for some $b \in R$ and $P=a R, a \in R$.

Thus $a R \subset b R$ and $a R \neq b R$
This implies $a \in P$ and $a=b x$ for some $x \in R$ and $b \notin P=a R$.
Since P is a prime ideal, $a=b x \in P, b \notin P \Rightarrow x \in P$
Then $x=a y$ for some $y \in R$
Now $a=b x=b a y \Rightarrow a(1-b y)=0$
Since $a \neq 0$ and R is principal ideal domain we get $1-b y=0$
$\Rightarrow 1=b y \in M=b R$
$\Rightarrow 1 \in M$
$\Rightarrow M=R$ which is a contradiction. Hence P is a maximal ideal.

OR

Let R be a commutative principal ideal domain with unity.
Let $P \neq R$ be any nonzero prime ideal of R then $P=(a)$ for some $a \in R$
$\Rightarrow P=a R \quad(P=(a)=\{a r / r \in R\}=a R)$
If possible, let P be not maximal ideal then there exists an ideal M such that $P \subseteq M \subseteq R \Rightarrow M \neq P$ and $M \neq R$

Since M is a principal ideal then $M=a R$, for some $b \in R$, where $b R \neq a R$ and $b R \neq R$.

$$
\begin{aligned}
P \subset M & \Rightarrow a R \subset b R \\
& \Rightarrow a \in b R \\
& \Rightarrow a=b x, \text { for some } x \in R
\end{aligned}
$$

Also $\quad b R \nsubseteq a R \quad$ (If $b R \subseteq a R$ and $a R \subseteq b R \Rightarrow a R=b R$)

$$
\Rightarrow b \notin a R .
$$

But $a R=P$ is a prime ideal and

$$
\begin{aligned}
a \in P & \Rightarrow b x \in P \\
& \Rightarrow x \in P \quad(b \notin a P=P) \\
& \Rightarrow x=a y, \quad \text { for some } y \in R \quad(P=a R) \\
& \Rightarrow x=b a y=a b y \\
& \Rightarrow a(1-b y)=0 \\
& \Rightarrow 1-b y=0 \quad(a \neq 0) \\
& \Rightarrow b y=1 \quad(R \text { is integral domain }) \\
& \Rightarrow 1 \in M \\
& \Rightarrow M=R \quad \text { which is a contradiction to } M \neq R
\end{aligned}
$$

$\Rightarrow P$ is a maximal ideal.
Conversely let P be a maximal then P is prime ideal (by previous theorem).
12.6.10 Example : Let R be a commutative ring with unity in which each ideal is prime ideal then prove that R is a field.

Proof. Suppose R is a commutative ring with unity in which each ideal is a prime ideal. In particular (0) is a prime ideal in R.

Let $a, b \in R$ and $a b=0 \Rightarrow a b \in(0) \Rightarrow a \in(0)$ or $b \in(0)$
$\therefore R$ has nonzero divisors and so R is an integral domain.
Let $a \in R$ and $a \neq 0$ then
$(a)(a)=\left\{\sum_{\text {finitesum }} r_{1} a . r_{2} a / r_{1}, r_{2} \in R\right\}=\left\{r^{2} a^{2} / r \in R\right\}=\left(a^{2}\right)$

But $\left(a^{2}\right)$ is a prime ideal, therefore $(a) \subseteq\left(a^{2}\right)$. It is easy to see that $\left(a^{2}\right) \subseteq(a)$
Thus we get $(a)=\left(a^{2}\right) \Rightarrow a \in\left(a^{2}\right)$

$$
\begin{aligned}
& \Rightarrow a=a^{2} x, \text { for some } x \in R \\
& \Rightarrow a(1-a x)=0 \\
& \Rightarrow 1-a x=0 \quad(\text { since } a \neq 0, R \text { is an integral domain }) \\
& \Rightarrow a x=1
\end{aligned}
$$

$$
\Rightarrow a \text { has an inverse in } R .
$$

Thus every non zero element of R is invertible in R, Hence R is a field
12.6.11 Example : Let R be a Boolean ring then prove that each prime ideal $P \neq R$ is maximal ideal.

Proof. Suppose R is a Boolean ring then $x^{2}=x \quad \forall x \in R$ and R is commutative ring. Let $P \neq R$ be a prime ideal in R

Consider the quotient ring R / P then R / P is also commutative.
We first show that R / P is an integral domain.
Let $a, b \in R$. Since P is prime ideal we have $a b \in P \Rightarrow a \in P$ or $b \in P$.
Thus if $\overline{a b}=\overline{0}$ then $\bar{a} \bar{b}=0 \Rightarrow \bar{a}=\overline{0}$ or $\bar{b}=\overline{0}$
(since $a \in P$ or $b \in P \Rightarrow a+P=P$ or $b+P=P \Rightarrow \bar{a}=\overline{0}$ or $\bar{b}=\overline{0}$)
where $\bar{x}=x+P \in R / P$ and $\overline{0}=0+P=P$.
Therefore R / P has no zero divisors. Hence R / P is an integral domain.
For all $x \in R$, we have

$$
(\bar{x})^{2}=(x+P)(x+P)=x^{2}+P=x+P=\bar{x} \quad\left(x^{2}=x\right)
$$

$\therefore R / P$ is a Boolean ring.
But every integral domain has only idempotent element 0 and possibly 1
$\therefore R / P=\{\overline{0}\}$ or $R / P=\{\overline{0}, \overline{1}\}$
If $R / P=\{\overline{0}\} \Rightarrow R=P$ which is not true $\quad($ since $P \neq R)$
$\therefore R / P=\{\overline{0}, \overline{1}\}$ is finite integral domain
$\Rightarrow R / P$ is field. Hence P is maximal ideal.
(OR)
Consider R / P where P is a prime ideal and $P \neq R$
Then $a b \in P \Rightarrow a \in P$ or $b \in P$
i.e., $a b+P=P \Rightarrow a+P=P$ or $b+P=P$
$\Rightarrow \bar{a} \bar{b}=0 \Rightarrow \bar{a}=\overline{0}$ or $\bar{b}=\overline{0}$
R / P is an integral domain
Also for all $x \in R$ we have
$(x+P)^{2}=(x+P)(x+P)=x^{2}+P=x+P \quad \forall x \in R$ since $\left(x^{2}=x\right)$
$\therefore(x+P)^{2}=(x+P)$ for all $x+P \in R / P$
$\Rightarrow R / P$ is a Boolean ring and also an integral domain.
We know that an integral domain has no idempotent element except zero and possibly unity.
$R / P=\{\overline{0}\}$ or $R / P=\{\overline{0}, \overline{1}\}$
(In an integral domain $x^{2}=x \Rightarrow x(1-x)=0 \Rightarrow x=0$ or $x=1$)
If $R / P=\{0\} \Rightarrow R=P$ which is a contradiction to $P \neq R$
$\therefore R / P=\{\overline{0}, \overline{1}\}$ is finite integral domain
$\therefore R / P$ is field $\Rightarrow P$ is maximal ideal.
12.6.12 Example : Let a be a non nilpotent element in a ring and let $S=\left\{a, a^{2}, a^{3}, \ldots\right\}$. Suppose P is maximal ideal in the family F of all ideals in R that are disjoint from S then P is a prime ideal.
(Note that the statement dose not say that P is maximal ideal in R precisely, it means that there does not exist any ideal $X \in F$ such that $X \supsetneq P$).

Sol. Let $A B \subseteq P$ where A and B are ideals in R.

If possible let $A \not \subset P$ and $B \not \subset P$ then $A+P \supset P$ and $B+P \supset P$.
By maximality of P we have $(A+P) \cap S \neq \Phi$ and $(B+P) \cap S \neq \Phi$.
Thus there exist positive integers i and j such that $a^{i} \in A+P$ and $a^{j} \in B+P$ then $a^{i} a^{j} \in(A+P)(B+P)=A B+A P+B P \subseteq P$ because $A B \subseteq P$ and P is an ideal in R. Thus $P \cap S \neq \Phi$ is a contradiction.
Hence $A B \subseteq P \Rightarrow$ either $A \subseteq P$ or $B \subseteq P$. Therefore P is a prime ideal.
12.6.13 Example : Let $R=C[0,1]$ be the ring of all real-valued continuous functions on the closed unit integral. If M is a maximal ideal of R then there exists a real number $\gamma, 0 \leq \gamma \leq 1$ such that $M=M_{\gamma}=\{f \in R / f(\gamma)=0\}$ and conversely.

Sol. Let M be a maximal ideal of $C[0,1]$.
We claim that there exist $\gamma \in[0,1]$ such that $f(\gamma)=0$ for all $f \in M$. Otherwise for each $x \in[0,1]$ there exist $f_{x} \in M$ such that $f_{x}(x) \neq 0$. Because f_{x} is continuous there exists an open integral say I_{x} such that $f_{x}(y) \neq 0$ for all $y \in I_{x}$. Clearly $[0,1]=\bigcup_{x \in[0,1]} I_{x}$. By the Heine-Borel theorem in analysis there exists a finite subfamily say $I_{x_{1}}, I_{x_{2}}, \ldots I_{x_{n}}$ of this family of open integrals $I_{x}, \quad x \in[0,1]$ such that $[0,1]=I_{x_{1}} \cup I_{x_{2}} \cup \ldots \cup I_{x_{n}}$ Consider $f=\sum_{i=1}^{n} f_{x_{i}}^{2}$ and suppose $f(z)=0$ for some $z \in[0,1]$.
Now $[0,1]=\bigcup_{i=1}^{n} I_{x_{i}}$ implies that there exists $I_{x_{k}}$ such that $z \in I_{x_{k}}(1 \leq k \leq n)$ then $f_{x_{k}}(z) \neq 0$. But $f(z)=0 \Rightarrow \sum\left(f_{x_{i}}(z)\right)^{2}=0 \Rightarrow f_{x_{k}}(z)=0$ is a contradiction. Thus $f(z) \neq 0$ for any $z \in[0,1]$ which is in turn yields that f is invertible and $M=C[0,1]$ which is not true.

Conversely, we show that M_{γ} is a maximal ideal of $C[0,1]$ for any $\gamma \in[0,1]$. It is easy to cheek that M_{γ} is an ideal. To see that it is maximal ideal, we note that $C[0,1] / M_{\gamma}$ is a field isomorphic to R.

Alternatively, we may proceed as follows
Let J be an ideal of $C[0,1]$ properly containing M_{γ}.
Let $g \in J, \quad g \notin M_{\gamma}$ then $g(\gamma) \neq 0$.
Let $g(\gamma)=\alpha$, then $h=g-\alpha$ is such that $h(\gamma)=0$
i.e., $h \in M_{\gamma}$ so $\alpha=g-h \in J$. But $\alpha \neq 0$ implies that α is invertible. Consequently $J=R$ which proves the converse.

12.7 Nilpotent Ideal

12.7.1 Definition : A right (left) ideal A in a ring R is called nilpotent ideal if $A^{n}=(0)$, for some positive integer n.
12.7.2 Example : (i) In any ring R the zero ideal $A=(0)$ is nilpotent ideal
(ii) The ideal $A=\{\overline{0}, \overline{2}\}$ is not zero a ideal in a ring $R=Z /<4>$, but it is nilpotent ideal.
Since $A^{2}=A . A=\{\overline{0}, \overline{2}\}\{\overline{0}, \overline{2}\}=\{\overline{0}, \overline{0}, \overline{0}, \overline{0}\}=(0) \Rightarrow A^{2}=(0)$
(iii) The ideal $A=\left(\begin{array}{ll}0 & Z \\ 0 & 0\end{array}\right)$ is a nilpotent ideal in a ring $R=\left(\begin{array}{cc}Z & Z \\ 0 & Z\end{array}\right)$ of 2×2 upper triangular matrices. Since $A^{2}=A . A=0_{2 \times 2}=(0)$.
12.7.3 Note : (i) Every zero ideal is a nilpotent ideal but converse need not be true.
ii) Every element in a nilpotent ideal is a nilpotent element but converse need not be true.
(iii) The set of nilpotent elements in ring R is not necessarly form a nilpotent ideal (this set may not be an ideal).
(iv) A ring R may have nonzero nilpotent element but it may not posses a nonzero nilpotent ideal.
12.7.4 Example : Let $R=F_{n}$ be the ring of $n \times n$ matrices over field F then R has nonzero nilpotent elements such as $e_{i j}, i \neq j, 1 \leq i, j \leq n$.

Sol. Let I be a nilpotent right ideal in R with $I^{k}=(0)$, where k is some positive integer then consider the ideal
$\underbrace{(R I)(R I) \ldots(R I)}_{k \text { times }}=R \underbrace{(I R) \ldots(I R)}_{(k-1) \text { times }} I \subseteq R \underbrace{I \ldots \ldots I I}_{(k-1) \text { times }} I=R I^{k}=(0)$.
Hence $R I$ is a nilpotent ideal in R . But we know that the ring $R=F_{n}$ has no nontrivial ideal then $R I=(0)$ or $R I=R$.

Since R has unity $\neq 0$ then $R I \neq R$. Therefore $R I=(0)$ only.
For any $a \in I$ we have $a=1 a \in R I=(0) \Rightarrow a=0$. Hence $I=(0)$

12.8 Nil Ideal

12.8.1 Definition : A right (left) ideal A in a ring R is called a nil ideal if each element of A is a nilpotent element.
12.8.2 Note : Every nilpotent right (left) ideal is nil ideal but converse is not true.
12.8.3 Example : Let $R=\oplus \sum Z /\left(p^{i}\right)$, for $i=1,2, \ldots$, be the direct sum of the rings $Z /\left(p^{i}\right)$, where p is prime number then R contains non zero nilpotent elements such as $\left(0+(p), p+\left(p^{2}\right), 0+\left(p^{3}\right) \ldots \ldots\right)$
Let I be the set of all nilpotent elements then I is an ideal in R because R is commutative, so I is a nil ideal. But I is not nilpotent ideal if $I^{k}=(0)$ for some positive integers $k>1$ then the element $x=\left(0+(p), 0+\left(p^{2}\right), \ldots, 0+\left(p^{k}\right), p+\left(p^{k+1}\right), 0+\left(p^{k+2}\right) \ldots \ldots\right)$ is nilpotent. So $x \in I$. But $x^{k} \neq 0$ which is a contradiction.

Hence I is not nilpotent ideal.

12.9 Some Basic Definitions

12.9.1 Definition : (Partial Order) Let S be a nonempty set. A binary relation on S denotes by $\leqslant "$ is called a partial order on S if the following conditions are satisfied for all $a, b, c \in S$ (i) $a \leq a \forall a \in S$ (reflexive)
(ii) $a \leq b$ and $b \leq a \Rightarrow a=b$ (antisymmetric)
(iii) $a \leq b$ and $b \leq c \Rightarrow a \leq c$ (transitive)
12.9.2 Definition : (Poset or Partially Ordered Set) A poset is a system (S, \leqslant) consisting of a nonempty set S and a partial order \leqslant on S.
12.9.3 Definition : (Chain) A subset C of S is said to be a chain in a poset (S, \leqslant) if for every $a, b \in C$ we have either $a \leqslant b$ or $b \leqslant a$.
12.9.4 Definition : (Upper Bound) An element $u \in S$ is said to be an upper bound of C if $a \leq u$ for every $a \in C$.
12.9.5 Definition : (Maximal Element) An element $m \in S$ is said to be a maximal element of $\operatorname{poset}(S, \leq)$ if $m \leq a, a \in S$ then $m=a$.
We now state Zorn's lemma without proof. 12.9.6 Definition : (Zorn's
Lemma) If every chain C in a poset (S, \leq) has an upper bound in S then (S, \leq) has a maximal element.
12.10 Existence of Maximal Ideal
12.10.1 Theorem : If R is a nonzero ring with unity 1 and I is an ideal in R such that $I \neq R$ then there exist a maximal ideal M of R such that $I \subseteq M$.

Proof. Let R be a ring with unity and $I \neq R$ is an ideal in R.
Let S be the set of all ideals $X \neq R$ in R such that $I \subseteq X$ then (S, \subseteq) is a partially ordered set under inclusion
(i) $A \subseteq A \quad \forall A \in S$
(ii) $A \subseteq B$ and $B \subseteq A \Rightarrow A=B$
(iii) $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$

Let C be only chain in S and $U=\bigcup_{x \in C} X$ then $I \subseteq U$ and U is an upper bound of C.

To prove that \mathbf{U} is an ideal : Let $a, b \in U$ then there exists ideals A, B in C such that $a \in A$ and $b \in B$. Since C is chain we have either $A \subseteq B$ or $B \subseteq A$ i.e., either $a, b \in A$ or $a, b \in B$

$$
\begin{aligned}
& \Rightarrow a-b \in A \text { or } a-b \in B \quad \text { (since } A, B \text { are ideals) } \\
& \Rightarrow a-b \in U
\end{aligned}
$$

Further $a \in U \Rightarrow a \in A$, for some $A \in C$
$\Rightarrow a r$ and $r a \in A, \forall r \in R$
$\Rightarrow a r$ and $r a \in U$
$\therefore U$ is an ideal in R.
If $U=R$ then $1 \in U$
$\Rightarrow 1 \in X$, for some $X \in C$
$\Rightarrow X=R$ which is a contradiction to $X \neq R$. Hence $U \neq R$.
If $I \subseteq X$ for all $X \in C \Rightarrow I \subseteq U \Rightarrow U \in S$ and also U is an upper bound for C. This shows that the chain C in a poset (S, \subseteq) has an upper bound in S. Since C is arbitrary, we see that every chain in (S, \subseteq) has an upper bound in S. Therefore by Zorn's lemma (21.14) we get (S, \subseteq) has a maximal element say M
i.e., M is an ideal in $R, I \subseteq M$ and $M \neq R$.

Let N be an ideal in R such that $M \subset N \subset R, M \neq N$.
If $N \neq R$ then $N \in S \quad($ since $I \subseteq M \subset N \Rightarrow I \subset N$)
which is a contradiction to the maximality of M. Hence $N=R$
Therefore M is a maximal ideal in R.

12.11 Summary

In this lesson maximal ideals and prime ideals were characterised. Moreover we established an existence theorem for maximal ideals

12.12 Glossary

Maximal Ideal, Prime Ideal, Nilpotent Ideal, Nil Ideal, Poset, Chain, Zorn's lemma .

UNIT-IV

LESSON-13

UNIQUE FACTORISATION DOMAINS

13.1 Introduction: In this lesson we define unique factorisation domain. Further, we prove that every prime element is irreducible element in an Integral domain.

13.2 Divisiblity:

13.2.1 Definition: Let a and b be two nonzero elements in a commutative integral domain R with unity. We say that b divides a (or b is a divisor of a or a is divisible by b or a is multiple of b) if there exists an element $c \in R$ such that $a=b c$. If b divides a then we write $b \mid a$ or $a \equiv 0(\bmod \mathrm{~b})$.
13.2.2 Definition: An element $u \in R$ is said to be unit in R if u has a multiplicative inverse in R i.e., an element u is a unit in R if there exists an element $v \in R$ such that $u v=1$.
13.2.3 Definition: Two elements a, b in R are said to be an associates if there exist an unit $u \in R$ such that $a=b u$.
13.2.4 Theorem: Let R be a commutative integral domain with unity then (i) an element $u \in R$ is a unit if and only if $u \mid 1$.
(ii) a, b are associates in R if and only if $a \mid b$ and $b \mid a$.

Proof. (i) If u is a unit in R then u is invertble, there exists $v \in R \ni$ $u v=1$. Therefore $u \mid 1$. Conversely if u is a divisor of 1 then there exists $v \in R \ni 1=u v$ and hence u is a unit in R.
(ii) If a, b are associates in R then $a=b u$ for some unit $u \in R$. Thus
$b \mid a$. If u is a unit in R there exists $v \in R \ni u v=1$. Now $a v=b u v=b .1=b$. Therefore $b=a v \Rightarrow a \mid b$. Conversely, suppose $a \mid b$ and $b \mid a$. If $a \mid b$
$\Rightarrow b=a x$ for some $x \in R$. If $b \mid a \Rightarrow a=b y$ for some $y \in R$. Now $b=a x=b y x=b x y \Rightarrow b(1-x y)=0 \Rightarrow x y=1$, where $a \neq 0$ and $b \neq 0$. Thus x and y are units. Therefore a, b are associates.
13.2.5 Definition: An element b in a commutative integral domain R with unity is called an improper divisor of an element a in R if b is either a unit or associate of a.
13.2.6 Theorem: Let R be a commutative integral domain with unity then
(i) $b \mid a$ if and only if $(a) \subset(b)$.
(ii) a and b are associates if and only if $(a)=(b)$.
(iii) u is a unit in R if and only if $(u)=R$.

Proof. (i) Suppose $b \mid a$. Then $a=b r$ for some $r \in R$. Now $x \in(a) \Rightarrow$ $x=a s$ for some $s \in R$. Now $x=a s=(b r) s=b(r s) \in(b)$. Thus $(a) \subset(b)$. (ii) a and b are associates $\Longleftrightarrow a \mid b$ and $b \mid a \Longleftrightarrow(b) \subset(a)$ and $(a) \subset(b)$ $\Longleftrightarrow(a)=(b)$
(iii) u is a unit in $R \Longleftrightarrow u$ is a divisor of $1 \Longleftrightarrow(1) \subset(u) \Longleftrightarrow R \subset(u)$ $\Longleftrightarrow(u)=R \quad($ since $(u) \subset R)$.
13.2.7 Definition: A nonzero element a of an integral domain R with unity is said to be an irreducible element if (i) a is not a unit and (ii) every divisor of a is improper, i.e., $a=b c, b, c \in R \Rightarrow$ either b is a unit or c is unit (i.e., the only divisors of a are units and associates).
13.2.8 Definition: A nonzero element p of an integral domain R with unity is said to be a prime element if (i) a is not unit and (ii)if $p \mid a b, a, b \in R$, then either $p \mid a$ or $p \mid b$.
13.2.9 Theorem: Every prime element is an irreducible element in an integral domain R with unity.

Proof. Suppose p is a prime element in R. To prove that p is irreducible element. Let $p=b c$ for some $b, c \in R$.
$p=b c \Rightarrow p .1=b c \Rightarrow p|b c \Rightarrow p| b$ or $p \mid c \quad(\therefore p$ is prime element $)$
If $p \mid b \Rightarrow b=p x$ for some $x \in R$. Now $p=b c=p x c \Rightarrow x c=1 \Rightarrow c$ is a unit.
If $p \mid c \Rightarrow c=p y$ for some $y \in R$. Now $p=b c=b p y \Rightarrow b y=1 \Rightarrow b$ is a unit. Therefore p is an irreducible element.
13.2.10 Remark: In an integral domain R with unity, every prime element is an irreducible element. But an irreducible element need not be prime element.

13.3 Principal Ideal Domain:

13.3.1 Defintion: A commutative integral domain R with unity is said to be principal ideal domain (PID) if each ideal in R is of the form $(a)=a R$, $a \in R$.
13.3.2 Theorem: Prove that an irreducible element in a commutative principal ideal domain (PID) is always a prime element.

Proof. Let R be a PID and let $p \in R$ is an irreducible element. Therefore p is not a unit. Suppose that $p \mid a b$, where $a, b \in R$. To show that either $p \mid a$ or $p \mid b$. Assume that $p \nmid a$. Consider (p) and (a) are ideals in R then $(p)+(a)$ is also an ideal in R. Since R is a PID then $(p)+(a)$ is a principal ideal in R. Therefore $(p)+(a)=(c)$, for some $c \in R$, $p \in(p) \subseteq(p)+(a)=(c) \Rightarrow p \in(c)$.
$\therefore p=c d$ for some $d \in R$.
As p is irreducible, we have either c in a unit or d in a unit.
Assume that d is a unit then $p=c d \Rightarrow p, c$ are associates $\Rightarrow(p)=(c)$.
But $(p)+(a)=(c)=(p) \quad(\because A+B=A \Rightarrow B \subseteq A)$
$\Rightarrow(a) \subseteq(p)$
$a \in(a) \subseteq(p) \Rightarrow a=p x$ for some $x \in R . \Rightarrow p \mid a$ which is a contradiction to d is unit.

Hence c is a unit. $(c)=R$.
Now $(a)+(p)=(c) \Rightarrow(a)+(p)=R$.
$1 \in R \Rightarrow 1 \in(a)+(p)$.

$$
\begin{aligned}
& \Rightarrow 1=a u+p u, \text { for some } u v \in R \\
& \Rightarrow b=b(a u+p v)=a b u+p b v . . \text { Therefore } a b u+p b v=b
\end{aligned}
$$

But $p \mid a b$ and $p \mid p b$. Therefore $p|a b u+p b v=b \Rightarrow p| b$. Therefore p is an prime element.

13.4 Unique factorisation domain (UFD)

13.4.1 Definition: A Commutative integral domain R with unity is called a UFD if
(i) Every nonunit element in R is a finite product of irreducible factors.
(ii) Every irreducible element in R is a prime element.
13.4.2 Theorem: If R is a UFD, then the factorization of any (nonunit) element in R as a finite product of irreducible factors is unique up to order and unit factors.

Proof. Let R be a UFD. Let a be a nonunit in $R, a \neq 0$.
If a is irreducible, then $a=b c \Rightarrow$ either b or c is a unit.
The theorem is true in case a is irreducible. Suppose a is not irreducible then a can be written as a finite product of irreducible elements say $a=p_{1} p_{2} \ldots p_{n}$, where p_{j} are irreducible elements in R.

Let $a=p_{1} p_{2} \ldots p_{n}=q_{1} q_{2} \ldots q_{n}$, where p_{i}, q_{j} are irreducible (and also prime) we prove that $m=n$ and each p_{i} is an associate of some q_{j}. we prove this
by using induction on m. If $m=1$ then $a=p_{1}$ where p_{1} is irreducible. Assume by induction hypothesis that the result is true for $m-1$ (factors).

Now $p_{1} p_{2} \ldots p_{m-1} p_{m}=q_{1} q_{2} \ldots q_{n-1} q_{n}$.
$\Rightarrow p_{m} \mid q_{1} q_{2} \ldots q_{n}$ (p_{m} is prime).
$\Rightarrow p_{m} \mid q_{j}$ for some j say $p_{m} \mid q_{k}$.
$q_{k}=u_{1} p_{m}, q_{k}$ is irreducible.
$\Rightarrow u_{1}$ is a unit.

$$
p_{1} p_{2} \ldots p_{m-1} p_{m}=q_{1} q_{2} \ldots q_{k-1} u_{1} p_{m} q_{k+1} \ldots q_{n}
$$

Then $p_{m}{ }^{-1} a=p_{1} p_{2} \ldots p_{m-1}=u_{1} q_{2} q_{3} \ldots q_{k-1} q_{k+1} \ldots q_{n} . p_{m}^{-1} a \in R$.
Therefore By the induction hypothesis, we get $m-1=n-1 \Rightarrow m=n$ and each p_{i} in a associate of some q_{j}. This complete the proof.
13.4.3 Definition: An element d in an commutative integral domain R with unity is called a greatest common divisor of $a, b \in R$ if
(i) $d|a, d| b$ and
(ii) if for $c \in R, c \mid a$ and $c \mid b$ then $c \mid d$.

It is denoted by $(a, b)=d$.
13.16 Note: (i) If d is a gcd of a, b then every associate of d is also a gcd.
(ii) If $d=(a, b) \quad u \in R$ is a unit, then $u d$ is also gcd.

13.5 PROBLEMS ON UNIQUE FACTORIZATION DOMAINS

13.5.1 Problem: Suppose R is commutative integral domain with unity.

Let $a, b, c \in R$ Then Prove the following:
(i) $c(a, b),(c a, c b)$ are associates.
(ii) $(a, b)=1, a|c, b| c \Rightarrow a b \mid c$.
(iii) $(a, b)=1, b|a c \Rightarrow b| c$.
(iv) $(a, b)=1,(a, c)=1 \Rightarrow(a, b c)=1$.

Sol. (i) Let $(a, b)=d,(c a, a b)=e$.

$$
\begin{aligned}
d|a, d| b & \Rightarrow c d|c a, c d| c b . \\
& \Rightarrow c d \mid e \\
& \Rightarrow e=c d x \text { for some } x \in R . \\
e|c a, e| c b & \Rightarrow c d x \mid c a . \\
& \Rightarrow c a=c d x y \text { for some } y \in R . \\
& \Rightarrow a=d x y \\
& \Rightarrow d x \mid a . \text { similarly } d x \mid b . \\
d x|a, d x| & b \Rightarrow d x \mid(a, b) . \\
& \Rightarrow c d x \mid c(a, b)=c d . \\
& \Rightarrow e \mid c d .
\end{aligned}
$$

$e, c d$ are associates.
$(c a, c b), c(a, b)$ are associates. \therefore we can take $(c a, c b)=c(a, b)$.
(ii) Suppose $(a, b)=1, a|c, b| c$.

$$
\begin{aligned}
a \mid c & \Rightarrow a b \mid b c \\
b \mid c & \Rightarrow a b \mid a c . \\
a b \mid a c, & a b \mid b c \\
& \therefore a b|(a c, b c) a b| c(a, b) \\
& \therefore a b \mid c . \quad[\because(a, b)=1]
\end{aligned}
$$

(iii) Suppose $(a, b)=1$.

$$
b|a c, b| b c
$$

$$
\therefore b \mid(a c, b c)=c(a, b)=c .
$$

$$
\therefore b \mid c
$$

(iv) Let $(a, b)=1,(a, c)=1$ and $(a, b c)=d$.

To prove $d=1$.

$$
\begin{aligned}
(a, b c)=d & \Rightarrow d|a, d| b c \\
& \Rightarrow d|a c, b| b c \Rightarrow d \mid(a c, b c) \\
& \Rightarrow d|c(a, b) \Rightarrow d| c \quad(\because(a, b)=1) \\
d & |a, d| c \Rightarrow d \mid(a, c)=1 \Rightarrow d=1 . \\
\therefore(a, b c) & =1
\end{aligned}
$$

13.5.2 Problem: Show that $2+\sqrt{-5}$ is irreducible but not a prime in $Z[\sqrt{-5}]$.
Sol. $R=Z[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in Z\}=\{a+b \sqrt{5} i: a, b \in Z\}$
It is clear that R is commutative integral domain with unity.
Define $N: R \rightarrow Z$ by $N(\alpha)=\alpha \bar{\alpha}, \alpha \in R$, where $\alpha=a+i \sqrt{5} b, \bar{\alpha}=a-i \sqrt{5} b$.
Now $\alpha \bar{\alpha}=a^{2}+5 b^{2}$

$$
N(a+i \sqrt{5} b)=a^{2}+5 b^{2} \in Z
$$

For $\alpha, \beta \in R$, we have
(i) $N(\alpha) \geq 0, N(\alpha)=0 \Longleftrightarrow \alpha=0$.
(ii) $N(\alpha \beta)=N(\alpha) N(\beta)$.
(iii) α is a unit $\Longleftrightarrow N(\alpha)=1$.

Let $\alpha=a+i \sqrt{5} b, \beta=c+i \sqrt{5} d$
$N(\alpha)=a^{2}+5 b^{2} \geq 0$
$N(\alpha)=0 \Longleftrightarrow a^{2}+5 b^{2}=0$
$\Longleftrightarrow a=0, b=0$
$\Longleftrightarrow \alpha=0$
$N(\alpha \beta)=(\alpha \beta)(\overline{\alpha \beta})=(\alpha \bar{\alpha})(\beta \bar{\beta})$
$=N(\alpha) N(\beta)$
Suppose α is a unit, then $\exists \beta \in R \ni \alpha \beta=1$.
$\therefore N(\alpha \beta)=N(1)=1$
$N(\alpha) N(\beta)=1$
$\therefore N(\alpha) \mid 1, N(\alpha) \geq 0$.
$N(\alpha)=1$.
Suppose $N(\alpha)=1 \Rightarrow \alpha \bar{\alpha}=1 \Rightarrow \bar{\alpha}=\alpha^{-1}$

$$
\Rightarrow \alpha \text { is a unit }
$$

$$
\therefore \alpha \text { is a unit } \Longleftrightarrow N(\alpha)=1 .
$$

We shall now find units of R.
Let $a+i \sqrt{5} b$ be a unit in R.
Then $a^{2}+5 b^{2}=1, a, b \in Z$.

$$
\therefore b=0 \text { and } a^{2}=1 \text { or } a= \pm 1, b=0 .
$$

\therefore units are ± 1.
We now show that $2+\sqrt{-5}$ is irreducible in R.
Let $2+\sqrt{-5}=\alpha \beta$ for some $\alpha, \beta \in R$.
Let $\alpha=a+\sqrt{-5} b, \beta=c+\sqrt{-5} d, \quad a, b, c, d \in Z$.
$N(\alpha \beta)=N(2+\sqrt{-5})=2^{2}+5.1^{2}=9$.
$N(\alpha) N(\beta)=9$.
$N(\alpha) \mid 9 \Rightarrow N(\alpha)=1$ or 3 or 9 .
Claim: $N(\alpha)=1$ or $N(\alpha)=9$

$$
\text { i.e. } N(\alpha) \neq 3 .
$$

Suppose if possible $N(\alpha)=3$.

$$
\begin{equation*}
a^{2}+5 b^{2}=3, \quad a, b \in Z \tag{1}
\end{equation*}
$$

But thus equation has no solution in Z.

$$
\therefore N(\alpha) \neq 3
$$

\therefore Either $N(\alpha)=1$ or $N(\alpha)=9 \Rightarrow N(\beta)=1$,
\Rightarrow Either α is a unit or β is a unit.
$\therefore 2+\sqrt{-5}$ is an irreducible element in R.

$$
\begin{align*}
& 3,3 \in R \quad 3 \times 3=9 \\
& (2+\sqrt{-5})(2-\sqrt{-5})=9 \\
& \therefore 2+\sqrt{-5} \mid 3 X 3, \quad 3 \in R \tag{2}
\end{align*}
$$

Claim: $2+\sqrt{-5} \mid 3$. Suppose if possible, $2+\sqrt{-5} \nmid 3$.
Then $\exists \alpha \in R \ni 3=(2+\sqrt{-5})$

$$
\begin{aligned}
& \therefore N(3)=N(\alpha) N(2+\sqrt{-5}) \\
& 9=N(\alpha) \times 9 \\
& \therefore N(\alpha)=1 \alpha \text { is a unit } . \\
& \alpha= \pm 1 .
\end{aligned}
$$

$$
3= \pm(2+\sqrt{-5}), \text { which is absurd. }
$$

$\therefore 2+\sqrt{-5} \nmid 3$, even though $2+\sqrt{-5}=3 \times 3,3 \in R$.
$\therefore 2+\sqrt{-5}$ is not a prime.
$\therefore Z[\sqrt{-5}]$ is not a UFD.
13.5.3 Problem: Show that 3 is irreducible but not a prime in $Z[\sqrt{-} 5]$.
13.5.4 Problem: Find gcd of $10+11 i, 8+i$ in $Z[i]$, where $Z[i]=\{a+b i$:
$a, b \in Z\}$ is the ring of Gaussian integers.

LESSON-14

PRINCIPAL IDEAL DOMAIN AND EUCLIDEAN DOMAIN

14.1 Introduction : In this lesson we define Euclidean domain and also prove that every ED is a PID but not conversely
14.2 Theorem: Every commutative PID with unity is a UFD, but not conversely.

Proof.
Suppose R is a PID, R is commutative and $1 \in R$.
To prove that R is a UFD, we show that
(i) Every irreducible element in R is a prime.
(This one is already proved)
(ii) Every non-unit in R is a finite product of irreducible elements.

To prove (ii), we establish the following.
$\star R$ doesn't contain any infinite ascending chain of ideals.
Suppose $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots \subseteq A_{n} \subseteq \ldots$ is an ascending chain of ideals in R. \qquad
R is a PID.
\therefore Each A_{i} is a principal ideal, say $A_{i}=\left(a_{i}\right)$ for some $a_{i} \in R$.

$$
\text { i.e. }\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq\left(a_{3}\right) \subseteq \ldots\left(a_{n}\right) \subseteq \ldots
$$

Consider $A=\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty}\left(a_{i}\right)$.
Claim: A is an ideal.
Let $x, y \in A, r \in R$.
$x, y \in A=\cup A_{n} \Rightarrow x \in A_{n_{1}}, y \in A_{n_{2}}$ for some n_{1}, n_{2}.
But we have either $A_{n_{1}} \subseteq A_{n_{2}}$ or $A_{n_{2}} \subseteq A_{n_{1}}$.

$$
\therefore x, y \in A_{n_{1}} \text { or } A_{n_{2}} \text {. }
$$

$$
\begin{aligned}
& x-y, r x \in A_{n_{1}} \text { or } A_{n_{2}} . \\
\therefore & x-y, r x \in A \\
\therefore & A \text { is an ideal in } R .
\end{aligned}
$$

But then A is a principal ideal. $(\because R$ is a PID $)$
Let $A=(a)$ for some $a \in R$.
$a \in A=\cup A_{n}$.
$\Rightarrow a \in A_{k}$ for some k.
Now $a \in A_{k}$
$\Rightarrow(a) \subseteq A_{k}$
$\Rightarrow A \subseteq A_{k}$.
But $A_{k} \subseteq$...
$\therefore A=A_{k}$.
$\therefore A_{m}=A$ for $m \geq k$.
$\therefore A_{1} \subseteq A_{2} \ldots \subseteq A_{k}=A=A \ldots \therefore$ (1) is a finite ascending chain of ideals.
i.e., There are no infinite ascending chain of ideals in R. This proves \star.

We now prove (ii).
Let $a \in R$, be a nonzero non unit.
If a is irreducible, then we are done.
So suppose a is not irreducible.
Then $a=a_{1} b_{1}$ for some $a_{1}, b_{1} \in R$ such that neither a_{1} nor b_{1} is a unit.
If both a_{1}, b_{1} are irreducible then a is a product of two irreducible elements.
So suppose a_{1} is not irreducible, b, is irreducible.
$a=a_{1}, b_{1} \Rightarrow a \in\left(a_{1}\right) \Rightarrow(a) \subseteq\left(a_{1}\right)$.
Then $a_{1}=a_{2} b_{2}$ where neither a_{2} not b_{2} is a unit

$$
a=a_{1}, b_{1}=a_{2} b_{2} b_{1} .
$$

If both a_{2}, b_{2} are irreducible then a is a product of their irreducible elements.
$(a) \subsetneq\left(a_{1}\right) \subsetneq\left(a_{2}\right)$.
If this process continues indefinitely, we get an infinite ascending chain of ideals in R, which leads to a contradiction to \star.
\therefore The process terminates after a finite number of steps, say k steps.
$a=a_{1}, b_{1} \ldots a_{k}$, where each a_{g} is irreducible this prove (ii).
We now show that there are UFDs which are not such PIDs.
We know that every field F is a UFD.
(we prove " R is a UFD $\Rightarrow R(x)$ a UFD" later)
Then $F[x]$ is a UFD. $F[x, y]=F[x] F[y]$ is also a UFD.
Take $(x),(y)$ which are ideals in $F[x, y]$.
$(x)+(y)$ is an ideal in $F[x, y]$.
Claim: $\quad(x)+(y)$ is not a principle ideal in $F[x, y]$.
suppose if possible $(x)+(y)$ is a principle ideal in $F[x, y]$ say $(x)+(y)=$ $(f(x, y))$, for some $f(x, y) \in F[x, y]$.

$$
x \in(x) \subseteq F[x, y] \Rightarrow x=f(x, y) c(x, y)
$$

similarly $y=f(x, y) d(x, y)$ for some $c(x, y), d(x, y) \in F[x, y]$.
If $f(x, y)$ is a unit then $(x)+(y)=F[x, y]$ which is not true.
Also $f(x, y) \neq 0$.
$\therefore \operatorname{deg} f(x, y) \geq 1$.
$x=f(x, y) c(x, y)$.
$\Rightarrow c(x, y)=$ const polynomial $=c$ (say)
$\operatorname{deg} f(x, y)=1$.
Similarly $d(x, y)=d($ a const $p)$

$$
\therefore x=c f(x, y), y=d f(x, y)
$$

$$
c y=d x .
$$

But this is a contradiction to the fact that x, y are two distinct variables.
$\therefore(x)+(y)$ is an ideal in $F[x, y]$ which is not a principal ideal.
$\therefore F[x, y]$ is not a PID even though it is a UFD.

14.3 Euclidean Domain

14.3.1 Definition: Suppose R is a commutative integral domain with unity.

If there is a function $\phi: R \rightarrow Z$ satisfying
(i) $a, b \in R-(0), a \mid b \Rightarrow \phi(a) \leq \phi(b)$.
(ii) For $a, b \in R, b \neq 0 \exists q, r \in R \ni a=q b+r$, where either $r=0$ or $\phi(r)<\phi(b)$.

Then R is called a Euclidean domain.
14.3.2 Theorem: Every Euclidean is a PID.

Proof. Suppose R is a ED with $\phi: R-(0) \rightarrow Z$.
To prove that R is PID.
Let A be an ideal in R.
If $A=(0)$, then there is nothing to prove.
So suppose $A \neq 0 . \exists a \in A \ni a \neq 0$.
Consider $S=\{\phi(a): a \in R, a \neq 0\} \subseteq Z$.

$$
\begin{gathered}
1 \mid a \forall a \neq 0 . \\
\therefore \phi(1) \leq \phi(a) . \\
\phi(1) \in S .
\end{gathered}
$$

i.e. $S(\subseteq Z)$, which is bounded below.
\therefore By the Well ordering principle, there is a least element in S, say $\phi(d)$.
Then $\alpha \in A, d \neq 0$, and $\phi(d) \leq \phi(a)$ forall $a \neq 0 \in A$.
Claim: $A=(d)$

$$
\begin{equation*}
d \in A \Rightarrow(d) \subseteq A \tag{1}
\end{equation*}
$$

Let $x \in A$

$$
\begin{aligned}
\therefore & x \in R, d \in R, d \neq 0 \\
\therefore & \exists q, r \in R \ni \\
& x=q d+r, r=0 \text { or } \phi(r)<\phi(d) .
\end{aligned}
$$

Suppose if possible $r \neq 0$. Then $\phi(r)<\phi(d)$.
$x \in A, d \in A, A$ ideal $\Rightarrow x, q d \in A$.

$$
\begin{gathered}
\Rightarrow x-q d \in A . \\
\Rightarrow r \in A . \\
\therefore r \neq 0, r \in A, \phi(r)<\phi(d) . \\
\phi(r) \in S \text { and } \phi(r)<\phi(d) .
\end{gathered}
$$

But this is a contradiction to the nature of $\phi(d)$.

$$
\begin{align*}
\therefore r & =0 . \\
x & =q d \in(d) \\
\therefore x & \in(d) \\
\therefore A & \subseteq(d) \tag{2}
\end{align*}
$$

(1) and $(2) \Rightarrow A=(d)$, a principal ideal.
$\therefore R$ is a PID.
14.3.3 Note: Every ED is a UFD.
$\mathrm{ED} \Rightarrow P I D \Rightarrow U F D$.
14.3.4 Example. Z is a ED (and hence Z is a UFD)

Define $\phi(a)=|a| \forall a \in Z$.
Let $a, b \in Z, a \neq 0, b \neq 0$ and $a \mid b$.
Then $b=a c$ for some $c \in Z$

$$
|b|=|a c|=|a||c|
$$

$$
\therefore|a| \leq|b|
$$

By the division algorithm in Z, we get for $a, b \in Z, b \neq Z \exists$ unique $q, r \in Z \ni$

$$
\begin{aligned}
& a=q b+r, \quad r=0 \text { or } 0<r<|b| . \\
& a=q b+r, \quad \phi(r)<\phi(b) . \\
& \therefore Z \text { is a ED. }
\end{aligned}
$$

14.3.5 Example. $Z[i]$, the ring of Gaussian integers is a ED.

Define $\phi: Z[i] \rightarrow Z$ by

$$
\phi(a+i b)=a^{2}+b^{2}=(a+i b)(a-i b) \forall a+i b \in Z[i]
$$

For each $\alpha \in Z[i], \phi(\alpha)=\alpha \bar{\alpha}=|\alpha|^{2}$.
Then
(i) $\phi(\alpha) \geq 0, \quad \phi(\alpha)=0 \Longleftrightarrow \alpha=0$.
(ii) $\phi(\alpha \beta)=\phi(\alpha) \phi(\beta)$
(iii) α is a unit $\Longleftrightarrow \phi(\alpha)=1$.

Sol.
(i) $\phi(\alpha)=|\alpha|^{2} \geq 0, \phi(\alpha)=0 \Longleftrightarrow|\alpha|=0 \Longleftrightarrow \alpha=0$.
(ii) $\phi(\alpha \beta)=|\alpha \beta|^{2}=|\alpha|^{2}|\beta|^{2}=\phi(\alpha) \phi(\beta)$.
(iii) Suppose α is a unit.
$\exists \beta \in Z[i] \ni \alpha \beta=1$
i.e. $\phi(\alpha \beta)=\phi(1)=1$
$\phi(\alpha) \phi(\beta)=1$.

$$
\Rightarrow \phi(\alpha) \mid 1
$$

$$
\Rightarrow \phi(\alpha)=1
$$

Suppose $\phi(\alpha)=1$.
$\Rightarrow|\alpha|^{2}=1 . \Rightarrow \alpha \bar{\alpha}=1$.
$\bar{\alpha}=\alpha^{-1} \in Z[i]$.

$$
\therefore \alpha \text { is a unit. }
$$

Let $a+i b$ be a unit in $Z[i]$.
Then $a^{2}+b^{2}=1, a, b \in Z$.

$$
\begin{gathered}
\therefore(a= \pm 1 \text { and } b=0) \Rightarrow \pm 1 \\
\quad \text { or } \\
\quad(a=0, b= \pm 1) \Rightarrow \pm i
\end{gathered}
$$

$\therefore \pm 1, \pm i$ are the units in $Z[i]$.
Let $\alpha \mid \beta$.

$$
\begin{aligned}
& \Rightarrow \beta=\alpha r, \text { for some } r \in Z[i] . \\
& \Rightarrow \phi(\beta)=\phi(\alpha) \phi(r) \\
& \Rightarrow \phi(\alpha) \mid \phi(\beta) \\
& \Rightarrow \phi(\alpha) \leq \phi(\beta)
\end{aligned}
$$

Let $\alpha, \beta \in Z[i], \beta \neq 0$.
Consider $\alpha \mid \beta$, which may or may not lie in $Z[i]$.
Write $\alpha \mid \beta=a+i b, a, b \in R$.

$$
\alpha=(a+i b) \beta .
$$

Consider integers m, n such that

$$
|a-m| \leq \frac{1}{2},|b-n| \leq \frac{1}{2}
$$

We are sure to get such integers m, n.
Take $\gamma=m+i n \in Z[i]$.
Then $\alpha=(a+i b) \beta$

$$
=((a-m)+i(b-n)) \beta+\gamma \beta .
$$

Write $\delta=((a-m)+i(b-n)) \beta$.
Then $\alpha=\gamma \beta+\delta$, where $\alpha, \beta, \gamma \in Z[i]$.
$\Rightarrow \gamma \beta \in Z[i]$.
$\Rightarrow \alpha-\gamma \beta \in Z[i]$.
$\Rightarrow \delta \in Z[i]$.
Thus $\exists \gamma, \delta \in Z[i] \ni \alpha=\gamma \beta+\delta$.

$$
\begin{aligned}
\phi(\delta)=|\delta|^{2} & =|(a-m)+i(b-n) \beta|^{2} . \\
& =|(a-m)+i(b-n)|^{2}|\beta|^{2} \\
& \leq\left(\frac{1}{4}+\frac{1}{4}\right)|\beta|^{2} . \\
& =\frac{1}{2}|\beta|^{2}<|\beta|^{2} \\
& =\phi(\beta) \\
\phi(\delta) & <\phi(\beta) .
\end{aligned}
$$

$\therefore Z[i]$ is a Euclidean domain.
$\therefore Z[i]$ is a PID and hence a UFD.
14.3.6 Problems. Suppose R is a ED with $\phi: R \rightarrow Z$. Prove the following
(i) $b \neq 0 \Rightarrow \phi(0)<\phi(b)$.
(ii) a, b are associates $\Rightarrow \phi(a)=\phi(b)$.
(iii) $a \mid b$ and $\phi(a)=\phi(b) \Rightarrow a, b$ are associates.

Sol. (i) $b \neq 0$.

$$
\begin{aligned}
& \Rightarrow a, b \in R, b \neq 0 . \\
& \Rightarrow 0=0 . b+0 . \\
& \therefore \phi(0)<\phi(b) .
\end{aligned}
$$

(ii) Suppose a, b are associates.

$$
\begin{aligned}
& \Rightarrow a \mid b \text { and } b \mid a . \\
& \Rightarrow \phi(a) \leq \phi(b) \leq \phi(a) . \\
& \Rightarrow \phi(a)=\phi(b) .
\end{aligned}
$$

(iii) Suppose $a \mid b$ and $\phi(a)=\phi(b)$.

Then to prove that $b \mid a$.
$\exists q, r \in R \ni a=b q+r$, where $\phi(r)<\phi(b)$.
Suppose if possible $r \neq 0$.
$a \mid b$.

$$
\begin{aligned}
\Rightarrow & b=a x \text { for some } x \in R . \\
& a=q(a x)+r . \\
\Rightarrow & r=a(1-q x) .
\end{aligned}
$$

$\Rightarrow a \mid r$.

$$
\Rightarrow \phi(a) \leq \phi(r) \leq \phi(b)
$$

i.e. $\phi(a)<\phi(b)=\phi(a)$.
$\therefore \phi(a)<\phi(a)$, absurd.
$\therefore r=0$.

$$
a=q b \text { or } b \mid a .
$$

Thus $a \mid b$ and $b \mid a$.
$\Rightarrow a, b$ are associates.

14.4 Summary

In this lesson we have established that every ED ia a PID. Also $Z[i]$, the ring of Gaussian integers is a ED and hence a PID and UFD

14.5 Glossary

Euclidean domain, The ring of Gaussian integers.

LESSON-15

POLYNOMIAL RINGS OVER UNIQUE FACTORIZATION DOMAIN

15.1 Introduction : In this lesson we study Polynomial rings over a commutative integral domain. Also we prove that a polynomial ring over a UFD is also a PID

15.2 Polynomial Ring

15.2.1 Definition: Suppose R is a commutative ring. Then $R[x]=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right.$: $\left.a_{i} \in R\right\}$, the set of all finite sequences of members in $R .\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ is a finite sequence we mean $a_{i}=0 \forall i>k$ for some k.

$$
\begin{aligned}
& \text { For }\left(a_{0}, a_{1}, a_{2}, \ldots\right),\left(b_{0}, b_{1}, b_{2}, \ldots\right) \in R[x] \text {, define } \\
& \qquad \begin{array}{c}
\left(a_{0}, a_{1}, a_{2}, \ldots\right)+\left(b_{0}, b_{1}, b_{2}, \ldots\right)=\left(a_{0}+b_{0}, a_{1}+b_{1}+a_{2}+b_{2}, \ldots\right) \\
\qquad \begin{array}{c}
\left(a_{0}, a_{1}, a_{2}, \ldots\right) \cdot\left(b_{0}, b_{1}, b_{2}, \ldots\right)=\left(c_{0}, c_{1}, c_{2}, \ldots\right), \text { where } \\
c_{0}
\end{array}=a_{0} b_{0}, c_{1}=a_{0} b_{1}+a_{1} b_{0} \\
c_{2}= \\
\vdots \\
\\
\vdots \\
c_{r} b_{2}+a_{1} b_{1}+a_{2} b_{0} \\
c_{0} b_{r}+a_{1} b_{r-1}+a_{2} b_{r-2}+\ldots+a_{r} b_{0}
\end{array}
\end{aligned}
$$

Then $R[x]$ is a ring under these operations, called the polynomial ring over R in the variable x.

Suppose $\left(a_{0}, a_{1}, a_{2}, \ldots\right) \in R[x]$. Then $\exists k \ni\left(a_{0}, a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}, 0,0,0, \ldots\right)$, $a_{k} \neq 0$
we denote the element by $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}$ and this is a polynomial in x.

$$
\left(a_{0}, a_{1}, a_{2}, \ldots, a_{k}, 0,0,0, \ldots\right) \rightarrow a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}
$$

write $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}, a_{k} \neq 0, k>0$.
a_{k} is called the leading coefficient of $f(x)$ and k is called the degree of the polynomial $f(x)$. If $a_{i}=0 \forall i$, we call $f(x)$, the zero polynomial for which we does not assign any degree.

In case $f(x)=a_{0}, a_{0} \neq 0, f(x)$ is called a constant polynomial and degree of $f(x)$ is taken as zero.

$$
\text { Let } \begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}, \quad\left(a_{k} \neq 0\right) \\
f(x) & =b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{k} x^{l}, \quad\left(b_{l} \neq 0\right)
\end{aligned}
$$

Then

$$
f(x) \cdot g(x)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\ldots+a_{k} b_{l} x^{k+l} .
$$

Suppose $R[x]=\{f(x)$: $f(x)$ is a polynomial with coefficients in $R\}$. Let $f(x) \in R[x]$, where R is a UFD, with $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, $\left(a_{n} \neq 0\right)$
If a_{n} is a unit, then $f(x)$ is called a monic polynomial.
If $\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right)$ is a unit, then $f(x)$ is called a primitive polynomial. $\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right)$ is called the context of $f(x)$ and is denoted by $c(f(x))$ or $c(f)$
15.2.2 Note: Every monic polynomial is a primitive polynomial.
15.2.3 Example: Consider $Z[x] f(x)=1+x+x^{2}-x^{3}, g(x)=2+4 x-$ $6 x^{2}+x^{3}$ are monic polynomials in $Z[x]$.
15.2.4 Example: $f(x)=2+6 x-10 x^{2}$ is not a primitive polynomial.

Sol. Since $\operatorname{gcd}(2,6,-10)=2$ is not a unit. Hence given $f(x)$ is not a primitive polynomial.

Here $c(f(x))=2$
$f(x)=2\left(1+3 x-5 x^{2}\right)=2\left(f_{1}(x)\right)$, where $f_{1}(x)=1+3 x-5 x^{2}$
$\left.f_{1}(x)\right)$ is primitive.
15.2.5 Note: If $f(x) \in Z[x]$, then $f(x)=c f_{1}(x)$, where $f_{1}(x)$ is a primitive polynomial.

15.2.6 Theorem (Division Algorithm):

Let $R=F[x]$, where F is a commutative integral domain. Let $f(x), g(x) \neq$ $0 \in F[x]$ of degrees m and n respectively. Let $k=\max \{m-n+1,0\}$. Suppose that a is the leading coefficient of $g(x)$, then there exists polynomials $q(x), r(x)$ in $F[x]$ uniquely satisfying $a^{k} f(x)=q(x) g(x)+r(x)$ where either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.

Proof. Let b be the leading coefficient of $f(x)$.
We prove the theorem by using induction on $m(=\operatorname{deg} f(x))$. Infact to prove the existence of $q(x)$ and $r(x)$.
If $m<n$, then take $q(x)=0$ and $r(x)=f(x)$, so that

$$
\begin{aligned}
f(x)= & 0 . g(x)+f(x), \operatorname{deg} f(x)=m<n=\operatorname{deg} g(x) \\
& \text { where } k=\max \{m-n+1,0\}=0 \rightarrow a^{k} f(x)=f(x) .
\end{aligned}
$$

Suppose $m \geq n$.
Suppose by the induction hypothesis $q(x), r(x)$ exists for all polynomials of degree $<m$.

Let $f_{1}(x)=a f(x)-b x^{m-n} g(x) \in F[x]$. Note that $\operatorname{deg} f_{1}(x)<m$.
Then by the induction hypothesis, we get polynomials $q_{1}(x), r_{1}(x)$ in $F[x] \ni$

$$
a^{k_{1}} f_{1}(x)=q_{1}(x) g(x)+r_{1}(x)
$$

where $r_{1}(x)=0$ or $\operatorname{deg} r_{1}(x)<\operatorname{deg} g(x)$.
Here $k_{1}=\max \{m-1-n+1,0\}=\max \{m-n, 0\}=m-n$

$$
a^{m-n} f_{1}(x)=q_{1}(x) g(x)+r_{1}(x)
$$

Now $a^{m-n}\left(a f(x)-b x^{m-n} g(x)\right)=q_{1}(x) g(x)+r_{1}(x)$

$$
a^{m-n+1} f(x)\left(a^{m-n} b x^{m-n}+q_{1}(x)\right) g(x)+r_{1}(x)
$$

$\therefore a^{k} f(x)=q(x) g(x)+r(x)$, where $r(x)=r_{1}(x)$
$q(x)=a^{m-n} b x^{m-n}+q_{1}(x) \in F[x], \operatorname{deg} r(x)<\operatorname{deg} g(x)$.
This proves the existance of $q(x)$ and $r(x)$.
We now prove the uniqueness $q(x)$ and $r(x)$.
Suppose $q^{\prime}(x), r^{\prime}(x)$ are such that

$$
a^{k} f(x)=q^{\prime}(x) g(x)+r^{\prime}(x), \operatorname{deg} r^{\prime}(x)<\operatorname{deg} g(x)
$$

We also have $a^{k} f(x)=q(x) g(x)+r(x)$,

$$
\begin{equation*}
\left(q^{\prime}(x)-q(x)\right) g(x)=r(x)-r^{\prime}(x) \tag{2}
\end{equation*}
$$

As $\operatorname{deg} r(x), \operatorname{deg} r^{\prime}(x)<n$, unless $r(x)=r^{\prime}(x)$ (2) leads to an absurdity
$\therefore r(x)=r^{\prime}(x)$
As $g(x) \neq 0, q(x)=q^{\prime}(x)$.
This completes the proof.

15.2.7 GAUSS LEMMA

Suppose $f(x), g(x) \in R[x]$, where R is a UFD. Then $c(f(x) g(x))=c(f(x)) c(g(x))$
i.e. the product of two primitive polynomials is a primitive polynomial.

Proof.

$$
\begin{aligned}
& f(x)=c(f(x)) f_{1}(x) . \\
& \mathrm{p} g(x)=c(g(x)) g_{1}(x), \text { where } f_{1}(x), g_{1}(x) \text { are primitive. } \\
& f(x) g(x)=c_{1} f_{1}(x) c_{2} g_{1}(x), c_{1}=c(f(x)), c_{2}=c(g(x)) . \\
& f(x) g(x)=c_{1} c_{2} f_{1}(x) g_{1}(x) .
\end{aligned}
$$

To prove that $c(f(x) g(x))=c_{1} c_{2}$, it is enough to show that $f_{1}(x) g_{1}(x)$ is a primitive polynomial.
\therefore In order to prove the theorem it is enough to show that the product
of any two primitive polynomials is a primitive polynomial. We now prove that $f_{1}(x) g_{1}(x)$ is a primitive polynomial.

Suppose $f_{1}(x) g_{1}(x)$ is not a primitive polynomial. Then there is a prime (or irreducible) element p in R such that p divides each of the coefficients of $f_{1}(x) g_{1}(x)$.
Write $f_{1}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a^{m} x^{m}, \quad a_{m} \neq 0$.

$$
g_{1}(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b^{m} x^{m}, \quad b_{m} \neq 0, \quad a_{i}, b_{j} \in R
$$

Then $f_{1}(x) g_{1}(x)=c_{0}+c_{1}(x)+c_{2} x^{2}+\ldots+c_{t} x^{t}+\ldots+a_{m} b_{n} x^{m+n}$.
where $\quad c_{0}=a_{0} b_{0}$.

$$
\begin{align*}
& c_{1}=a_{0} b_{1}+a_{1} b_{0} \\
& c_{2}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} . \\
& \vdots \\
& c_{t}=a_{0} b_{t}+a_{1} b_{t-1}+\ldots+a_{t} b_{0} . \\
& \quad \vdots \tag{2}
\end{align*}
$$

We have $p \mid c_{j} \forall j$
$f_{1}(x)$ is a primitive polynomial.
Let s be the least index $\ni p \nmid a_{s}$.
$g_{1}(x)$ is also primitive.
$\therefore k \ni p \nmid b_{k}, \quad k$ least.

$$
\text { i.e } \left.\begin{array}{l}
p\left|a_{0}, p\right| a_{1}, p\left|a_{2}, \ldots, p\right| a_{s-1} \text { but } p \nmid a_{s} \tag{3}\\
p\left|b_{0}, p\right| b_{1}, p\left|b_{2}, \ldots, p\right| b_{k-1} \text { but } p \nmid a_{k}
\end{array}\right\}
$$

Consider $c_{s+k}=a_{0} b_{s+k}+a_{1} b_{s+k-1}+\ldots+a_{s-1} b_{k+1}+a_{s} b_{k}+a_{s+1} b_{k-1}+$ $\ldots+a_{s+k} b_{0}$.

By (2) and (3), we see that $p \mid a_{s} b_{k} . p$ is prime.

$$
\therefore \text { But } p \nmid a_{s}, p \nmid b_{k} \text {. }
$$

This contradicts the primality of p.

$$
\therefore f_{1} g_{1}(x) \text { is a primitive polynomial. }
$$

15.2.8 Theorem: If R is a UFD, then $R[x]$ is also a UFD.

Proof. As R is a commutative integral domain with unity so is $R[x]$.
We first prove that every non-zero element of $R[x]$ is a finite product of irreducible elements.

Let $f(x)(\neq 0) \in R[x]$.
We prove this by using induction on $\operatorname{deg} f(x)$.
Let $\operatorname{deg} f(x)=0$. Then $f(x)=a \in R, a \neq 0 . R$ is a UFD. $\Rightarrow a=p_{1} p_{2} \ldots p_{s}$, a finite product of irreducible elements.

Assume that, by the induction hypothesis, the result (1) is same for all the polynomials of degree $<\operatorname{deg} f(x)$.

In case $f(x)$ is irreducible, then there is nothing to prove.
So suppose $f(x)$ is not irreducible. Then $f(x)=f_{1}(x) f_{2}(x)$ for some $f_{1}, f_{2}(x) \in$ $R[x]$, wherein neither $f_{1}(x)$ nor $f_{2}(x)$ is a unit.

Note that $\operatorname{deg} f_{1}(x)<\operatorname{deg} f(x), \operatorname{deg} f_{2}(x)<\operatorname{deg} f(x)$,
\therefore By the induction hypothesis (2) $f_{1}(x)$ and $f_{2}(x)$ can be written as a finite product of irreducible elements in $R[x]$ and hence $f(x)$ is also a finite product of irreducible elements of $R[x]$.

This proves (1)
We now prove that every irreducible element of $R[x]$ is a prime element.
Let $p(x)$ be an irreducible element.
Let $p(x) \mid f(x) g(x), f(x), g(x) \in R[x]$.

It is enough to prove that either $p(x) \mid f(x)$ or $p(x) \mid g(x)$.
Assume that $p(x) \nmid f(x)$
Suppose $\operatorname{deg} p(x)=0$. Then $p(x) \in R$, say $p(x)=b, b \in R . R$ is a UFD.

$$
\begin{aligned}
c \mid f(x) g(x) & \Rightarrow f(x) g(x)=b h(x) \text { for some } h(x) . \\
& \Rightarrow c(f(x)) c(g(x))=b c(h(x)) . \\
& \Rightarrow b \mid c(f(x)) c(g(x)) . \\
& \Rightarrow b \mid c(f(x)) \text { or } b \mid c(g(x)) .
\end{aligned}
$$

But $f(x)=c(f(x)) f_{1}(x), g(x)=c(g(x)) g_{1}(x)$.
$\therefore b \mid c(f(x)) f_{1}(x)$ or $b \mid c(g(x)) g_{1}(x)$.
i.e $b \mid f(x)$ or $b \mid g(x)$.
$p(x) \mid f(x)$ or $p(x) \mid g(x)$.
$\therefore p(x)$ is prime in this case.
So suppose $\operatorname{deg} p(x)>0$. Consider the ideal generated by $p(x)$ and $f(x)$ i.e $\langle p(x), f(x)\rangle$ in $R[x]$.
Infact

$$
S=\langle p(x), f(x)\rangle=\{A(x) p(x)+B(x) p(x): A(x), B(x) \in R[x]\} .
$$

Let $\phi(x)$ be a polynomial of least degree in $\langle p(x), f(x)\rangle$.
Let a be the leading coefficient of $\phi(x) . f(x), \phi(x) \in R[x], \phi(x) \neq 0$.
\therefore By the division algorithm.

$$
\begin{aligned}
& a^{k} f(x)=q(x) \phi(x)+r(x), r(x)=0 \text { or } \operatorname{deg} r(x)<\operatorname{deg} \phi(x), \\
& \quad \text { where } r(x), q(x) \in R[x] . \\
& a^{k} f(x) \in S, \phi(x) \in S, q(x) \in R[x] . \Rightarrow q(x) \phi(x) \in S . \\
& \therefore a^{k} f(x)-q(x) \phi(x) \in S, r(x) \in S .
\end{aligned}
$$

If $r(x) \neq 0$, then this leads to a contradiction to the nature of $\phi(x)$.

$$
\therefore r(x)=0 \text {. }
$$

$$
\begin{aligned}
& \therefore a^{k} f(x)=q(x) \phi(x) . \\
& \quad=q(x) c(\phi) \phi_{1}(x), \phi_{1}(x) \text { is primitive. } \\
& \Rightarrow \phi_{1}(x) \mid a^{k} f(x) . \\
& \Rightarrow a^{k} f(x)=t(x) \phi_{1}(x) . \\
& \Rightarrow a^{k} c(f)=c(t) c\left(\phi_{1}\right), \text { By Gauss Lemma. } \\
& \Rightarrow a^{k} c(f)=c(t)\left(\because c\left(\phi_{1}\right)=1 \text { as } \phi_{1} \text { is prime }\right) . \\
& \Rightarrow a^{k} \mid c(t)\left(\text { But } t(x)=c(t) t_{1}(x)\right) . \\
& \Rightarrow a^{k} \mid c(t) t_{1}(x)=t(x) . \\
& \Rightarrow a^{k} \mid t(x) . \\
& \therefore \phi_{1}(x) \mid f(x) .
\end{aligned}
$$

Similarly we can see that $\phi_{1}(x) \mid p(x)$.
But $p(x)$ is irreducible and $p(x) \nmid f(x)$ i.e. $p(x), f(x)$ are relatively prime.
$\phi_{1}(x) \mid \operatorname{gcd}(p(x), f(x))$.
$\therefore \phi_{1}(x)$ is a unit i.e. $\phi_{1}(x) \in R$.
But $\phi(x)=c(\phi) \phi_{1}(x) \in R$.
$\therefore \phi(x)=a \in S$.
$\therefore \exists A(x), B(x) \in R[x] \ni a=A(x) p(x)+B(x) f(x)$.
$\Rightarrow a g(x)=A(x) p(x) g(x)+B(x) f(x) g(x)$
But $p(x)|f(x) g(x), p(x)| p(x) g(x)$.
$\therefore p(x) \mid A(x) p(x) g(x)+B(x) f(x) g(x)=a g(x)$.
$\therefore p(x) \mid a g(x)$.
$a g(x)=t(x) p(x)$ for some $t(x) \in R[x]$.
$a c(g)=c(t) c(p)$, by Gauss Lemma.
$a c(g)=c(t) . \quad(p(x)$ is irreducible $\Rightarrow c(p)=1)$
$\therefore a \mid c(t)$.

$$
\begin{aligned}
& \Rightarrow a \mid c(t) t_{1}(x) \quad\left(\because t(x)=c(x) t_{1}(x)\right) . \\
& \Rightarrow a \mid t(x) .
\end{aligned}
$$

Now $a \mid t(x), a g(x)=t(x) p(x)$.
$\therefore p(x) \mid g(x)$.

15.3 Summary

In this lesson we have established the division algorithm in a polynomial ring $F[x]$. Moreover we proved that the product any two primitive polynomials is again primitive.

15.4 Glossary

Polynomial ring, Division algorithm, Primitive polynomial .

LESSON-16

RINGS OF FRACTIONS

16.1 Introduction : In this lesson we study the rings of fractions.
16.2 Definition: Suppose R is a commutative ring. An element $a(\neq 0) \in$ R, which is not a zero divisor is called a regular element of R.
16.3 Definition: Let $S \subset R$. If $s_{1}, s_{2} \in S \Rightarrow s_{1} s_{2} \in S$. Then S is called a multiplicative set.

If S is a multiplicative subset of R in which each element is regular then S is called a regular multiplicative set.
16.4 Note: Suppose R is a commutative integral domain. Then $R-(0)$ is a regular multiplicative set.

Proof. Let $a, b \in R-(0)$.
$\Rightarrow a \neq 0, b \neq 0$.
$\Rightarrow a b \neq 0$
$\Rightarrow a b \in R-(0)$.
$\therefore R-(0)$ is a multiplicative set.
Infact every $a \in R-(0), a \neq 0$ and a is not a zero divisor.
Hence every element of $R-(0)$ is a regular element.
Showing that $R-(0)$ is a regular multiplicative set.
16.5 Theorem: suppose R is a commutative ring and S a multiplicative subset of R. Then define a relation \sim on $R \times S$ as follows:

For $\left(a, s_{1}\right),\left(b, s_{2}\right) \in R \times S$, define

$$
\left(a, s_{1}\right) \sim\left(b, s_{2}\right) \Rightarrow \exists s_{3} \in S \ni s_{3}\left(a s_{2}-b s_{1}\right)=0
$$

Then \sim is an equivalence relation on $R \times S$.
Proof.
Let $(a, s) \in R \times S$. For any $s_{1} \in S$, we have $s_{1}(a s-a s)=0$
giving $(a, s) \sim(a, s)$, proving \sim is reflexive.
Let $\left(a, s_{1}\right) \sim\left(b, s_{2}\right)$.
$\Rightarrow \exists s_{3} \in S \ni s_{3}\left(a s_{2}-b s_{1}\right)=0$
$\Rightarrow s_{3}\left(b s_{1}-a s_{2}\right)=0$
$\Rightarrow\left(b, s_{2}\right) \sim\left(a, s_{1}\right)$
showing \sim is symmetric.
Let $\left(a, s_{1}\right) \sim\left(b, s_{2}\right),\left(b, s_{2}\right) \sim\left(c, s_{3}\right)$. To prove that $\left(a, s_{1}\right) \sim\left(c, s_{3}\right)$. Then
$\exists s^{\prime}, s^{\prime \prime} \in S \ni s^{\prime}\left(a s_{2}-b s_{1}\right)=0, s^{\prime \prime}\left(b s_{3}-c s_{2}\right)=0$.
Now $s^{\prime \prime} s_{3} s^{\prime}\left(a s_{2}-b s_{1}\right)=0$ and
$s^{\prime} s_{1} s^{\prime \prime}\left(b s_{3}-c s_{2}\right)=0$. Adding these two we get
$s^{\prime \prime} s_{3} s^{\prime} s_{2} a-s^{\prime} s_{1} s^{\prime \prime} s_{2} c=0$.
$s^{\prime} s^{\prime \prime} s_{2}\left(a s_{3}-c s_{1}\right)=0 . \quad\left(\because s^{\prime \prime \prime}=s^{\prime} s^{\prime \prime} s_{2} \in S\right)$
$s^{\prime \prime \prime}\left(a s_{3}-c s_{1}\right)=0$.
which implies $\left(a, s_{1}\right) \sim\left(c, s_{3}\right)$, proving \sim is transitive.
Hence \sim is an equivalence relation.
16.6 Theorem: Denote the equivalent class of $(a, s) \in R \times S$ by $\frac{a}{s}$. Write

$$
R_{S}=\left\{\frac{a}{s}: a \in R, s \in S\right\}
$$

Define + , on R_{s} as follows:

$$
\begin{aligned}
& \frac{a_{1}}{s_{1}}+\frac{a_{2}}{s_{2}}=\frac{a_{1} s_{2}+a_{2} s_{1}}{s_{1} s_{2}} . \\
& \frac{a_{1}}{s_{1}} \cdot \frac{a_{2}}{s_{2}}=\frac{a_{1} s_{2} \cdot a_{2} s_{1}}{s_{1} s_{2}} .
\end{aligned} \quad\left(\forall \frac{a_{1}}{s_{1}}, \frac{a_{2}}{s_{2}} \in R_{s}\right)
$$

Then R_{s} is called the ring of fractions of R with respect to S or localisation of R at S or quotient ring of R with respect to S.

Proof.

Let $\frac{a}{s}$ be the equivalent class of (a, s)

$$
\frac{a}{s}=[(a, s)]
$$

$$
\begin{aligned}
& =\left\{\left(b, s^{\prime}\right):\left(b, s^{\prime}\right) \sim(a, s)\right\} \\
& =\left\{\left(b, s^{\prime}\right): s^{\prime \prime}\left(a s^{\prime}-b s\right)=0 \text { for some } s^{\prime \prime} \in S\right\}
\end{aligned}
$$

Clearly
$R_{s}=\left\{\frac{a}{s}: a \in R, s \in S\right\}, \frac{a}{s}=[(a, s)]$ is a ring with unity (with zero $\frac{0}{s}$ and unity $\frac{s}{s}$ for any $s \in S$)

$$
\frac{a}{s_{1}}+\frac{0}{s}=\frac{a_{1} s+0 . s_{1}}{s_{1} s}=\frac{a_{1} s}{s_{1} s}=\frac{a_{1}}{s_{1}}
$$

(since $\frac{a}{s}=\frac{a s_{1}}{s s_{1}}$

$$
\begin{aligned}
\Longleftrightarrow & {[(a, s)]=\left[\left(a s_{1}, s s_{1}\right)\right], \quad(a, s) \in[(a, s)] } \\
\Longleftrightarrow & (a, s) \sim\left(a s_{1}, s s_{1}\right) \text { because } \\
& s^{\prime}\left(a s s_{1}-a s_{1} s\right)=0 \forall s^{\prime} \in S
\end{aligned}
$$

Therefore $\left(a s_{1}, s s_{1}\right) \in[(a, s)]$

$$
\left(a s_{1}, s s_{1}\right) \in\left[\left(a s_{1}, s s_{1}\right)\right]
$$

proving $[(a, s)]=\left[\left(a s_{1}, s s_{1}\right)\right]$
Which gives $\left.\frac{a}{s}=\frac{a s_{1}}{s s_{1}}\right)$
$\frac{a_{1}}{s_{1}} \cdot \frac{s}{s}=\frac{a_{1} s}{s_{1} s}=\frac{a_{1}}{s_{1}}$.
16.7 Theorem: Suppose S is a multiplicative subset of a commutative ring
R. Let R_{s} be the ring of fractions of R with respect to S. If $0 \in S$, then $R_{s}=(0)$.

Proof.

$0 \in S ; \quad \frac{a}{s} \in R_{s}$
$\frac{a}{s}=\frac{a s_{1}}{s s_{1}} \forall s_{1} \in s$.
In particular, 0 in the place of s_{1}, gives

$$
\begin{gathered}
\frac{a}{s}=\frac{0}{0}=\frac{0}{s^{\prime}} \quad\left(s^{\prime}=0 \in S\right) \\
\therefore R_{s}=0 \quad\left(\frac{0}{0}=0 \text { of } R_{s}\right. \\
\left.\frac{0}{0}=1 \text { of } R_{s}\right)
\end{gathered}
$$

$\frac{0}{0}=\frac{s^{\prime}}{s^{\prime}}, s^{\prime}=0 \in S \Rightarrow \frac{0}{0}$ is unity.

$$
\left(0=1 \in R_{s} \text { if } 0 \in S\right)
$$

16.8 Theorem: Suppose S is a multiplicative subset of R, where R is a commutative ring. Then there is a natural homomorphism $f: R \rightarrow R_{s}$ given by $f(a)=\frac{a s}{s} \forall a \in R$ and for some fixed $s \in S$. Moreover, f is a monomorphism (i.e 1-1 homeomorphism)
$\Longleftrightarrow " x \in S, a \in R, x a=0 \Rightarrow a=0 "$
Proof.
Clearly $f: R \rightarrow R_{s}\left(\because a s \in R, s \in S \Rightarrow \frac{a s}{s} \in R_{s}\right)$
Let $a_{1}, a_{2} \in R$. Then $f\left(a_{1}\right)+f\left(a_{2}\right)=\frac{a_{1} s}{s}+\frac{a_{2} s}{s}$

$$
\begin{aligned}
& =\frac{a_{1} s s+a_{2} s s}{s s} \\
& =\frac{a_{1} s^{2}+a_{2} s^{2}}{s^{2}}=\frac{\left(a_{1}+a_{2}\right) s^{2}}{s^{2}} \\
& =\frac{\left(a_{1}+a_{2}\right) s}{s}
\end{aligned}
$$

$f\left(a_{1}+a_{2}\right)=\frac{\left(a_{1}+a_{2}\right) s}{s}$
$f\left(a_{1}\right) f\left(a_{2}\right)=\frac{a_{1} s}{s} \cdot \frac{a_{2} s}{s}=\frac{a_{1} a_{2} s s}{s s}=\frac{a_{1} a_{2} s}{s}$
$f\left(a_{1} a_{2}\right)=\frac{a_{1} a_{2} s}{s}$.
$\therefore f$ is homomorphism.
f is monomorphism $\Longleftrightarrow \operatorname{ker} f=(0)$
$\Longleftrightarrow\left\{a \in R: f(a)=0\right.$ of $\left.R_{s}\right\}=(0)$
$\Longleftrightarrow\left\{a \in R: \frac{a s}{s}=\frac{0}{s}\right\}=(0)$
$\Longleftrightarrow\{a \in R:(a s, s) \sim(0, s)\}=(0)$
$\Longleftrightarrow\left\{a \in R: \exists s^{\prime} \in s \ni s^{\prime}(\right.$ ass $\left.-0 s)=0\right\}=(0)$
$\Longleftrightarrow\left\{a \in R: \exists s^{\prime} \in S \ni a s^{2} s^{\prime}=0\right\}=(0)$
$\Longleftrightarrow\{a \in R: a x=0, x \in S\}=(0)$
$\Longleftrightarrow " a x=0, x \in S \Rightarrow a=0 "$
16.9 Theorem: Suppose R is a commutative ring with some regular elements. Let S be the set of all regular elements of R. Then we have the following statements.
(i) R can be embedded in R_{s}.

Treating R to be a subring of R_{s}, we have
(ii) Every regular element of R is invertible in R_{s}.
(iii) Every element $\frac{a}{s} \in R_{s}$ can be written as $a s^{\prime}, a \in R, s \in S$.

Proof.
Claim: S is a multiplicative subset of R.
Let $s_{1}, s_{2} \in S$. Then s_{1}, s_{2} are regular elements.
$\therefore s_{1}, s_{2} \neq 0 \quad$ (otherwise s_{1}, s_{2} become zero divisors)
If $\exists s \in S \ni\left(s_{1} s_{2}\right) s=0$, then $s_{1}\left(s_{2} s\right)=0$.
But s_{1} being not a zero divisor, we have $s_{2} s=0$
s_{2} is not also a zero divisor.
$\therefore s=0$.
$\therefore s_{1} s_{2}$ is not a zero divisor.
$\therefore s_{1} s_{2} \in S$.
$\therefore S$ is a multiplicative set.
Let R_{s} be the ring of fractions of R with respect to S.
We know that $f: R \rightarrow R_{s}$ given by $f(a)=\frac{a s}{s}$ is a homomorphism.
Let $x \in S, a \in R \ni a x=0$.
$x \in S \Rightarrow x$ is a regular element.
$\Rightarrow x$ is not a zero divisor.
$\therefore a=0$
$\therefore f$ is $1-1$ homomorphism. $\quad R \hookrightarrow R_{s}$
$\therefore R$ is embedded in R_{S}.
As such we can treat R as a subring of R_{s} by identifying $a \in R$ with $\frac{a s}{s} \in R_{s}$.

$$
a \leftrightarrow \frac{a s}{s}
$$

Let $a \in S$ i.e. a is a regular element of R.
Consider $b=\frac{s}{a s}$ (for some $s \in S$)

$$
\begin{aligned}
& (\because a \in S \Rightarrow a s \in S \\
& \left.\quad s \in(S \subset) R \Rightarrow \frac{s}{a s} \in R_{s}\right) .
\end{aligned}
$$

Then $b \in R_{s}$.
$a . b=a \cdot \frac{s}{a s}=\frac{a s}{s} \cdot \frac{s}{a s}=\frac{a s s}{s a s}=\frac{s^{\prime}}{s^{\prime}}=1 \in R_{s}$.
$\left(s^{\prime}=a s^{2} \in S\right)$
$b \in R_{s}$ and $a^{-1}=b$

$$
\therefore a^{-1}=\frac{s}{a s}
$$

Let $\frac{a_{1}}{s_{1}} \in R_{S}$
$a_{1} \cdot s_{1}^{-1}=a_{1} \cdot \frac{s}{s_{1} s}=\frac{a \cdot s}{s} \cdot \frac{s}{s_{1} s}=\frac{a_{1} s s}{s_{1} s s}=\frac{a_{1}}{s_{1}}$

$$
\therefore \frac{a_{1}}{s_{1}}=a_{1} s_{1}^{-1}
$$

16.10 Theorem: Every commutative integral domain can be embedded in a field.

Proof. Suppose R is a commutate integral domain.
Take $S=R-(0)$, which is the set of all regular elements of R.
$\therefore R \hookrightarrow R_{s}$, where every regular element of R is invertible in R_{s}.
Let $\frac{a_{1}}{s_{1}} \in R_{s}, \frac{a_{1}}{s_{1}} \neq 0$ of $R_{s} \quad \frac{a_{1}}{s_{1}} \neq \frac{0}{s}$
$s_{1} \in S=R-(0) \Rightarrow s_{1} \neq 0$.
$\frac{a_{1}}{s_{1}}=\frac{0}{s} \Rightarrow a_{1} \neq 0 \Rightarrow a_{1} \in S$.
$a_{1} \in S, s_{1} \in(S \subseteq R) \Rightarrow \frac{s_{1}}{a_{1}} \in R_{s}$.
Then $\frac{a_{1}}{s_{1}} \cdot \frac{s_{1}}{a_{1}}=\frac{a_{1} s_{1}}{s_{1} a_{1}}=\frac{s^{\prime}}{s^{\prime}},\left(s^{\prime}=a_{1} s_{1} \in S\right)$

$$
\begin{aligned}
& =1 \text { of } R_{s} \\
& \quad \therefore\left(\frac{a_{1}}{s_{1}}\right)^{-1}=\frac{s_{1}}{a_{1}} .
\end{aligned}
$$

$\therefore R_{s}$ is a field and R is embedded in R_{s}.
R_{s} is called the field of fractions.

16.11 Definition (Local Rings):

Suppose R is a ring with unity. If R has a unique maximal right ideal, then R is called a Local ring.
16.12 Theorem: Suppose R is a commutative ring, P a prime ideal in R.

Let $S=R-p$. Then S is a multiplicative subset of R and R_{s} is a local ring with the unique manimal ideal p_{s}, where $p_{s}=\left\{\frac{a}{s}: a \in p, s \in S\right\}$

Proof. Let $s_{1}, s_{2} \in S . S=R-p$
$\Rightarrow s_{1}, s_{2} \notin p \Rightarrow s_{1} s_{2} \notin p(\because p$ is a prime ideal $)$
(For, if $s_{1} s_{2} \in p, p$ is a prime ideal in R, R commutative.
$\Rightarrow s_{1} \in p$ or $s_{2} \in p$ which is not true.)
$s_{1} s_{2} \notin p \Rightarrow s_{1} s_{2} \in R-p=S \Rightarrow s_{1} s_{2} \in S$.
$\therefore S$ is a multiplicative set.
$\therefore R_{s}$ is a commutative ring.
Consider $p_{s}=\left\{\frac{a}{s}: a \in p, s \in S\right\}$.
Let $\frac{a_{1}}{s_{1}}, \frac{a_{2}}{s_{2}} \in p_{s}$. Then $\frac{a_{1}}{s_{1}}-\frac{a_{2}}{s_{2}}=\frac{a_{1} s_{2}-a_{2} s_{1}}{s_{1} s_{2}}$
p is a (prime) ideal, $a_{1} \in p, a_{2} \in p, s_{1} s_{2} \in(S \subset) R$

$$
\begin{aligned}
& \Rightarrow a_{1} s_{2}-a_{2} s_{1} \in p \\
& \therefore \frac{a_{1}}{s_{1}}-\frac{a_{2}}{s_{2}} \in p_{s}
\end{aligned}
$$

Let $\frac{x}{s} \in R_{s}, \frac{a_{1}}{s_{1}} \in p_{s}$.
$\frac{x}{s} \cdot \frac{a_{1}}{s_{1}}=\frac{x a_{1}}{s s_{1}}$, where $s s_{1} \in S$.
$x \in R, a_{1} \in p, p$ is an ideal $\Rightarrow x a_{1} \in p$.

$$
\begin{aligned}
& \therefore \frac{x a_{1}}{s s_{1}} \in p_{s} \\
& \therefore p_{s} \text { is an ideal in } R_{s} .
\end{aligned}
$$

We now prove the manimal ideal nature of p_{s}.
Let A be an ideal in $R_{s} \ni p_{s} \subseteq A \subseteq R_{s}$.
Let $p_{s} \neq A$ i.e. $p_{s} \subsetneq A$.
Then $\exists \frac{x}{s} \in A \ni \frac{x}{s} \in p_{s}$. Here $x \in S, x \notin p$.
$x \notin p \Rightarrow x \in R-p=S \Rightarrow x \in S$
$s \in(S \subseteq R), x \in S \Rightarrow \frac{s}{x} \in R_{s}$.
Now $\frac{s}{x} \in R_{s}, \frac{x}{a} \in A, A$ is an ideal.

$$
\therefore \frac{s}{x} \cdot \frac{x}{s} \in A \text { i.e } \frac{x s}{x s} \in A
$$

A contains the unity of R_{s}.
$\therefore A=R_{s}$.
$\therefore P_{s}$ is a maximal ideal in R_{s}.
To prove that R_{s} a local ring it remains to be shown that P_{s} is unique.
Let B be a maximal ideal in R_{s} and $B \neq p_{s}$.
Then $B \neq R_{s}$.
Then $\exists \frac{x}{a} \in p_{s}$ but $\frac{x}{s} \in B$ and $\left(\exists \frac{y}{s_{1}} \in p_{s}\right.$ but $\left.\frac{y}{s_{1}} \notin B\right)$
Let $\frac{x}{s} \in B$ but $\frac{x}{s} \in p_{s}$.
Then $B=R_{s}$, which is a contradiction.
$\therefore R_{s}$ is a local ring.

16.12 Summary

In this lesson Every commutative integral domain can be embedded in a field.

16.13 Glossary

Regular element, Ring of fractions, Local element.

